Paper
10 July 2002 System dynamic modeling of a piezoelectric hydraulic pump
Author Affiliations +
Abstract
A system dynamic model has been developed for assessing the performance of a piezoelectric hydraulic pump. The pump system comprises a stack actuator driven pump, four-way valve, hydraulic accumulator, and hydraulic actuator. A system of differential equations was developed that governs the electrical / mechanical / fluid coupled behavior. The system of equations was simultaneously solved using MATLAB. The results were compared to pump data for a stack actuator input of 2 MV/m at operating frequencies between 2.5 Hz and 100 Hz. Previous work comparing the model to experimental results was recently accepted for publication in a future article . The work presented below presents a review of the model and discusses additional experimental results of the pump's flow rate response under hydraulic actuator loads. The model achieved reasonable agreement with flow rate measurements when the hydraulic actuator was loaded with 62 N and 142 N of constant force. Rate effects were observed to limit the high frequency performance. These effects were attributed to fluid compressibility, check valve resistance, and self heating of the stack actuator. The model provides a design tool for evaluating bandwidth limitations and increasing pressure and flow rate.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
William S. Oates, Lisa D. Mauck, and Christopher S. Lynch "System dynamic modeling of a piezoelectric hydraulic pump", Proc. SPIE 4693, Smart Structures and Materials 2002: Modeling, Signal Processing, and Control, (10 July 2002); https://doi.org/10.1117/12.475210
Lens.org Logo
CITATIONS
Cited by 9 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Actuators

Fluid dynamics

Systems modeling

Ferroelectric materials

Dynamical systems

Resistance

Head

Back to Top