Paper
13 January 2003 Non-orthogonal screen and its application in moire-free halftoning
Author Affiliations +
Proceedings Volume 5008, Color Imaging VIII: Processing, Hardcopy, and Applications; (2003) https://doi.org/10.1117/12.479672
Event: Electronic Imaging 2003, 2003, Santa Clara, CA, United States
Abstract
In color reproduction, the most troublesome moire pattern is the second-order moire, or the three-color moire, usually produced by mixing of cyan, magenta and black halftone outputs. A classical 3-color zero-moire solution is using three identical cluster halftone screens with different rotations: 15, 45 and 75°, respectively. However, for most digital printing devices, the size and shape of halftone screens are constrained by the "digital grid", which defines the locations of printed dots; and therefore, an exact 15 or 75° rotation of a cluster screen is impossible. Although there are many alternative approaches for moire-free color halftoning, most of them only provide approximate solutions and/or have a tendency to generate additional artifacts associated with halftone outputs. The difficulty to achieve moire-free color halftoning is greatly relieved by using non-orthogonal halftone screens, i.e., screens in general parallelogram shapes. In this paper, a general condition for 3-color zero-moire solutions is derived. A procedure using integer equations to search moire-free solutions for different applications is also described.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Shen-ge Wang, Zhigang Fan, and Zhenhuan Wen "Non-orthogonal screen and its application in moire-free halftoning", Proc. SPIE 5008, Color Imaging VIII: Processing, Hardcopy, and Applications, (13 January 2003); https://doi.org/10.1117/12.479672
Lens.org Logo
CITATIONS
Cited by 6 scholarly publications and 2 patents.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Halftones

Printing

Color reproduction

Fourier transforms

Moire patterns

Visual process modeling

Visual system

RELATED CONTENT

Window-based spectral analysis of color halftone screens
Proceedings of SPIE (January 25 2011)
Uniform rosette for moire-free color halftoning
Proceedings of SPIE (January 29 2007)
Application of blue noise mask in color halftoning
Proceedings of SPIE (February 27 1996)
Optimal halftoning over hexagonal grids
Proceedings of SPIE (January 16 2006)
Optimal clustered dot color screen design based on a human...
Proceedings of SPIE (December 21 2000)

Back to Top