Paper
19 May 2003 Region of interest and windowing-based progressive medical image delivery using JPEG2000
Author Affiliations +
Abstract
An important telemedicine application is the perusal of CT scans (digital format) from a central server housed in a healthcare enterprise across a bandwidth constrained network by radiologists situated at remote locations for medical diagnostic purposes. It is generally expected that a viewing station respond to an image request by displaying the image within 1-2 seconds. Owing to limited bandwidth, it may not be possible to deliver the complete image in such a short period of time with traditional techniques. In this paper, we investigate progressive image delivery solutions by using JPEG 2000. An estimate of the time taken in different network bandwidths is performed to compare their relative merits. We further make use of the fact that most medical images are 12-16 bits, but would ultimately be converted to an 8-bit image via windowing for display on the monitor. We propose a windowing progressive RoI technique to exploit this and investigate JPEG 2000 RoI based compression after applying a favorite or a default window setting on the original image. Subsequent requests for different RoIs and window settings would then be processed at the server. For the windowing progressive RoI mode, we report a 50% reduction in transmission time.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Nithin Nagaraj, Sudipta Mukhopadhyay, Frederick W. Wheeler, and Ricardo S. Avila "Region of interest and windowing-based progressive medical image delivery using JPEG2000", Proc. SPIE 5033, Medical Imaging 2003: PACS and Integrated Medical Information Systems: Design and Evaluation, (19 May 2003); https://doi.org/10.1117/12.480467
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Image compression

Medical imaging

Image transmission

Computed tomography

Wavelets

Digital imaging

Lung

Back to Top