PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Implantable retinal prosthetic devices consisting of microelectrode arrays are being built in attempts to restore vision. Current retinal prostheses use metal planar electrodes. We are developing a novel electro-neural interface using carbon nanotube (CNT) bundles as flexible, protruding microelectrodes. We have synthesized vertically self-assembled, multi-walled CNT bundles by thermal chemical vapor deposition. Using conventional silicon-based micro-fabrication processes, these CNT bundles were integrated onto pre-patterned circuits. CNT protruding electrodes have significant potentials in providing safer stimulation for retinal prostheses. They could also act as recording units to sense electrical and chemical activities in neural systems for fundamental neuroscience research.
Ke Wang,Hongjie Dai,Harvey A. Fishman, andJames S. Harris
"Fabrication of a carbon nanotube protruding electrode array for a retinal prosthesis", Proc. SPIE 5718, Microfluidics, BioMEMS, and Medical Microsystems III, (22 January 2005); https://doi.org/10.1117/12.591153
ACCESS THE FULL ARTICLE
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Ke Wang, Hongjie Dai, Harvey A. Fishman, James S. Harris, "Fabrication of a carbon nanotube protruding electrode array for a retinal prosthesis," Proc. SPIE 5718, Microfluidics, BioMEMS, and Medical Microsystems III, (22 January 2005); https://doi.org/10.1117/12.591153