Paper
15 February 2012 Axial phase measurements of light interacting with microstructures
Author Affiliations +
Abstract
We present an experimental method to study field structures of highly confined light after interaction with microstructures. A high-resolution interference microscope (HRIM) allows us to measure the three-dimensional (3D) amplitude and phase distributions of light emerging from the sample. While the amplitude fields represent conventional pictures of light confinements like a hotspot, the phase fields exhibit peculiar behaviors, which are of significant interest. Longitudinal-differential interferometry can directly visualize and quantify phase deviations in 3D space with respect to a plane wave of the same frequency serving as a reference. The phase fields near the confinement exhibits particular phase features, e.g., axial phase anomaly and superluminal phase velocity. As example of the light interaction with microstructures, two specific optical phenomena have been investigated here: Gouy phase anomaly in the photonic nanojet and superluminal phase propagation of the spot of Arago. For the first time, we could experimentally demonstrate high-resolution axial phase measurements of such phenomena generated by microstructures of wavelengthscale size and at visible light with 642-nm wavelength.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Myun-Sik Kim, Toralf Scharf, and Hans Peter Herzig "Axial phase measurements of light interacting with microstructures", Proc. SPIE 8250, Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS and Nanodevices XI, 825007 (15 February 2012); https://doi.org/10.1117/12.905461
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Phase measurement

Interferometry

Photonics

Phase velocity

Optical spheres

Phase shifts

3D metrology

Back to Top