We present LodeSTAR, an unsupervised, single-shot object detector for microscopy. LodeSTAR exploits the symmetries of problem statements to train neural networks using extremely small datasets and without ground truth. We demonstrate that LodeSTAR is comparable to state-of-the-art, supervised deep learning methods, despite training on orders of magnitude less training data, and no annotations. Moreover, we demonstrate that LodeSTAR achieves near theoretically optimal results in terms of sub-pixel positioning of objects of various shapes. Finally, we show that LodeSTAR can exploit additional symmetries to measure additional particle properties, such as the axial position of objects and particle polarizability.
Label-free characterization of biological matter across scales was recorded at SPIE Optics + Photonics held in San Diego, California, United States 2022.
We present LodeSTAR, a label-free, single-shot particle tracker. We design a method for exploiting the symmetries of problem statements to train neural networks using extremely small datasets and without ground truth. We demonstrate that LodeSTAR outperforms traditional methods in terms of accuracy and that it reliably tracks experimental data of packed cells. Finally, we show that LodeSTAR can exploit additional symmetries to extend the measurable particle properties to the axial position of objects and particle polarizability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.