In this study, the controlled formation, trapping, and self-oscillation of vapor microbubbles in ethanol was investigated using low-power continuous wave (CW) lasers. The formation of these microbubbles is achieved by evaporation of ethanol due to heating by light absorption (CW laser emitting at λ = 658 nm) in silver nanoparticles deposited at the distal end of a multimode optical fiber. A second low-power NIR laser (λ = 1,550 nm) coupled to a single-mode optical fiber is then used to trap the microbubbles. It has been shown that the bulk absorption of light at 1,550 nm in ethanol modulates the surface tension of the bubble wall, creating a three-dimensional potential well that efficiently traps the bubbles. Furthermore, it was observed that once the bubble is trapped, random variations in its radius create instabilities in the trap, resulting in microbubble oscillations. The trapped bubble tends to oscillate between two quasi-stationary equilibrium points along the propagation of light. These oscillations are the result of competition between several forces, such as the Marangoni, the upward of buoyancy, and the drag forces. The results presented in this work contribute significantly to the understanding of these phenomena and may have important applications in fields such as microfluidics and bubble manipulation.
SignificanceThe number of injections administered has increased dramatically worldwide due to vaccination campaigns following the COVID-19 pandemic, creating a problem of disposing of syringes and needles. Accidental needle sticks occur among medical and cleaning staff, exposing them to highly contagious diseases, such as hepatitis and human immunodeficiency virus. In addition, needle phobia may prevent adequate treatment. To overcome these problems, we propose a needle-free injector based on thermocavitation.AimExperimentally study the dynamics of vapor bubbles produced by thermocavitation inside a fully buried 3D fused silica chamber and the resulting high-speed jets emerging through a small nozzle made at the top of it. The injected volume can range from ∼0.1 to 2 μL per shot. We also demonstrate that these jets have the ability to penetrate agar skin phantoms and ex-vivo porcine skin.ApproachThrough the use of a high-speed camera, the dynamics of liquid jets ejected from a microfluidic device were studied. Thermocavitation bubbles are generated by a continuous wave laser (1064 nm). The 3D chamber was fabricated by ultra-short pulse laser-assisted chemical etching. Penetration tests are conducted using agar gels (1%, 1.25%, 1.5%, 1.75%, and 2% concentrations) and porcine tissue as a model for human skin.ResultHigh-speed camera video analysis showed that the average maximum bubble wall speed is about 10 to 25 m/s for almost any combination of pump laser parameters; however, a clever design of the chamber and nozzle enables one to obtain jets with an average speed of ∼70 m / s. The expelled volume per shot (0.1 to 2 μl) can be controlled by the pump laser intensity. Our injector can deliver up to 20 shots before chamber refill. Penetration of jets into agar of different concentrations and ex-vivo porcine skin is demonstrated.ConclusionsThe needle-free injectors based on thermocavitation may hold promise for commercial development, due to their cost and compactness.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.