Glassy carbon is used nowadays for a variety of applications because of its mechanical strength, thermal stability and
non-sticking adhesion properties. One application is glass molding that allows to realize high resolution diffractive
optical elements on large areas and at affordable price appropriate for mass production. We study glassy carbon microstructuring
for future precision compression molding of low and high glass-transition temperature. For applications in
optics the uniformity, surface roughness, edge definition and lateral resolution are very important parameters for a stamp
and the final product. We study different methods of microstructuring of glassy carbon by etching and milling. Reactive
ion etching with different protection layers such as photoresists, aluminium and titanium hard masks have been
performed and will be compare with Ion beam etching. We comment on the quality of the structure definition and give
process details as well as drawbacks for the different methods. In our fabrications we were able to realize optically flat
diffractive structures with slope angles of 80° at typical feature sizes of 5 micron and 700 nm depth qualified for high
precision glass molding.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.