Here, we present a high pulse energy Raman laser at 1946 nm wavelength pumped with a 1533 nm linearly polarized fiber laser, with ∼92 μJ pulse energy, ∼60 pm linewidth, 8 kHz repetition rate, and 7 ns pulse duration. The Raman laser is based on the stimulated Raman scattering (SRS) effect in an 8-meter carbon dioxide (CO2) filled nested anti-resonant hollow-core fiber (ARHCF). The nested structure contributes to the significant reduction of the fiber loss caused by light leakage, surface scattering and bend, therefore allowing coiling the gas-filled ARHCF with a relatively small bend radius of just ~5 cm. When the pressure in the CO2-filled ARHCF increases from 1 to 17 bar, the pulse energy first reaches the maximum pulse energy level of 16.3 μJ (corresponding to 28 % quantum efficiency) at only 1.2 bar, and then rapidly decreases due to the pressure-dependent overlap of the Raman laser line with the absorption band of CO2 at 2 μm spectral range. The relative intensity noise (RIN) of the Raman laser reaches a minimum level (4%) when the pulse energy exceeds ∼8 µJ. Due to the low amount of heat release during the SRS process, the laser has a good long-term stability without significant drift. Our results constitute a novel and promising technology towards high-energy 2 μm lasers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.