12 September 2023 Vortex fiber nulling for exoplanet observations: implementation and first light
Daniel Echeverri, Jerry Xuan, Nemanja Jovanovic, Garreth Ruane, Jacques-Robert Delorme, Dimitri Mawet, Bertrand Mennesson, Eugene Serabyn, J. Kent Wallace, Jason Wang, Jean-Baptiste Ruffio, Luke Finnerty, Yinzi Xin, Maxwell Millar-Blanchaer, Ashley Baker, Randall Bartos, Benjamin Calvin, Sylvain Cetre, Greg Doppmann, Michael P. Fitzgerald, Sofia Hillman, Katelyn Horstman, Chih-Chun Hsu, Joshua Liberman, Ronald Lopez, Evan Morris, Jacklyn Pezzato, Caprice L. Phillips, Bin B. Ren, Ben Sappey, Tobias Schofield, Andrew J. Skemer, Connor Vancil, Ji Wang
Author Affiliations +
Abstract

Vortex fiber nulling (VFN) is a single-aperture interferometric technique for detecting and characterizing exoplanets separated from their host star by less than a diffracted beam width. VFN uses a vortex mask and single-mode fiber to selectively reject starlight while coupling off-axis planet light with a simple optical design that can be readily implemented on existing direct imaging instruments that can feed light to an optical fiber. With its axially symmetric coupling region peaking within the inner working angle of conventional coronagraphs, VFN is more efficient at detecting new companions at small separations than conventional direct imaging, thereby increasing the yield of on-going exoplanet search campaigns. We deployed a VFN mode operating in K band (2.0 to 2.5 μm) on the Keck Planet Imager and Characterizer (KPIC) instrument at the Keck II Telescope. We present the instrument design of this first on-sky demonstration of VFN and the results from on-sky commissioning, including planet and star throughput measurements and predicted flux-ratio detection limits for close-in companions. The instrument performance is shown to be sufficient for detecting a companion 103 times fainter than a fifth magnitude host star in 1 h at a separation of 50 mas (1.1 λ / D). This makes the instrument capable of efficiently detecting substellar companions around young stars. We also discuss several routes for improvement that will reduce the required integration time for a detection by a factor >3.

© 2023 Society of Photo-Optical Instrumentation Engineers (SPIE)
Daniel Echeverri, Jerry Xuan, Nemanja Jovanovic, Garreth Ruane, Jacques-Robert Delorme, Dimitri Mawet, Bertrand Mennesson, Eugene Serabyn, J. Kent Wallace, Jason Wang, Jean-Baptiste Ruffio, Luke Finnerty, Yinzi Xin, Maxwell Millar-Blanchaer, Ashley Baker, Randall Bartos, Benjamin Calvin, Sylvain Cetre, Greg Doppmann, Michael P. Fitzgerald, Sofia Hillman, Katelyn Horstman, Chih-Chun Hsu, Joshua Liberman, Ronald Lopez, Evan Morris, Jacklyn Pezzato, Caprice L. Phillips, Bin B. Ren, Ben Sappey, Tobias Schofield, Andrew J. Skemer, Connor Vancil, and Ji Wang "Vortex fiber nulling for exoplanet observations: implementation and first light," Journal of Astronomical Telescopes, Instruments, and Systems 9(3), 035002 (12 September 2023). https://doi.org/10.1117/1.JATIS.9.3.035002
Received: 2 June 2023; Accepted: 30 August 2023; Published: 12 September 2023
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Stars

Equipment

Exoplanets

Planets

Single mode fibers

Point spread functions

K band

Back to Top