Deep learning has resulted in a huge advancement in computer vision. However, deep models require an enormous amount of manually annotated data, which is a laborious and time-consuming task. Large amounts of images demand the availability of target objects for acquisition. This is a kind of luxury we usually do not have in the context of automatic inspection of complex mechanical assemblies, such as in the aircraft industry. We focus on using deep convolutional neural networks (CNN) for automatic industrial inspection of mechanical assemblies, where training images are limited and hard to collect. Computer-aided design model (CAD) is a standard way to describe mechanical assemblies; for each assembly part we have a three-dimensional CAD model with the real dimensions and geometrical properties. Therefore, rendering of CAD models to generate synthetic training data is an attractive approach that comes with perfect annotations. Our ultimate goal is to obtain a deep CNN model trained on synthetic renders and deployed to recognize the presence of target objects in never-before-seen real images collected by commercial RGB cameras. Different approaches are adopted to close the domain gap between synthetic and real images. First, the domain randomization technique is applied to generate synthetic data for training. Second, domain invariant features are utilized while training, allowing to use the trained model directly in the target domain. Finally, we propose a way to learn better representative features using augmented autoencoders, getting performance close to our baseline models trained with real images.
Deep learning resulted in a huge advancement in computer vision. However, deep models require a large amount of manually annotated data, which is not easy to obtain, especially in a context of sensitive industries. Rendering of Computer Aided Design (CAD) models to generate synthetic training data could be an attractive workaround. This paper focuses on using Deep Convolutional Neural Networks (DCNN) for automatic industrial inspection of mechanical assemblies, where training images are limited and hard to collect. The ultimate goal of this work is to obtain a DCNN classification model trained on synthetic renders, and deploy it to verify the presence of target objects in never-seen-before real images collected by RGB cameras. Two approaches are adopted to close the domain gap between synthetic and real images. First, Domain Randomization technique is applied to generate synthetic data for training. Second, a novel approach is proposed to learn better features representations by means of self-supervision: we used an Augmented Auto-Encoder (AAE) and achieved results competitive to our baseline model trained on real images. In addition, this approach outperformed baseline results when the problem was simplified to binary classification for each object individually.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.