This work reports nanodiamond-silk membranes as an optical platform for biosensing and cell growth applications. The hybrid structure was fabricated through electrospinning and mimics a 2D scaffold with high porosity. The negatively charged nitrogen vacancy (NV-) centres in diamond exhibits optically detected magnetic resonance (ODMR), which enables sensing of temperature variations. The NV- centre, as reported in literature, provides a shift of 74 kHz in the ODMR frequency per degree rise in temperature. For our hybrid membranes, we have however observed that the embedded NV- centre provide a greater shift of 95±5 kHz/K in the ODMR frequency. This higher shift in the frequency will result in improved temperature sensitivity enabling the tracking of thermal variations in the biologically relevant window of 25-50 ºC. The thermal conductivity of silk and diamond-silk hybrid will be explored to investigate this enhanced temperature sensing ability of diamond. The hybrid diamond-silk membranes are found to be hydrophilic with a contact angle of (65±2)º. The biocompatibility of the membranes is tested both in vitro in skin keratinocyte (HaCaT) cells and in vivo in a live mouse wound model. The membranes did not induce any toxicity to the cell growth and survival. Moreover, we observed resistance towards the growth and attachment of bacteria.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.