Accurate optical modeling for design and optimization of liquid crystal on silicon spatial light modulators (LCoS SLMs) is important for phase-related applications. Traditional matrix method cannot accurately predict the optical performance when the LC distribution is complex, therefore the rigorous finite element method (FEM) is preferred. However, the optical modeling of LCoS is a multidimensional problem, which is difficult to simulate with FEM. Here, we present the development of an improved FEM by combining the scattering matrix method with the domain decomposition method to reduce the computational burden for optical simulation of LCoS. Furthermore, a 2D simulation example with phase grating displayed on LCoS is presented and compared with experiment.
There are many important applications for phase-only liquid crystal on Silicon-based spatial light modulators (LCOS SLMs). Among the applications, the diffractive beam splitting, beam shaping and beam steering with LCOS SLM are finding more and more use in telecommunication applications (e.g. wavelength selective switch for ROADM, space and mode division multiplexing). However, many effects of LCOS device have to be considered if we want to get high quality output light field. For example, the ideal phase, intensity and polarization distribution in far field are usually deteriorated by the pixelated metal structure and fringing field effects. Thus, the total efficiency is decreased. By using electro-optical and electromagnetic simulation methods, we can properly incorporate the effects that influence the optical performance of LCOS and optimize the design. Furthermore we report the implementation of the high-performance high-resolution LCOS SLM for the telecommunication C- and L-band with the average insertion loss (IL) of less than 0.2 dB, achieved by the reflectivity-enhancement coating on the LCOS backplane. The experimental results on reflectivity, diffraction efficiency, crosstalk and other important parameters are compared with the theoretical predictions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.