Understanding the band alignment at metal/2D semiconductor (SC) contacts is essential for electrical characterizations of 2D SC materials and for fabrication of high performance 2D SC devices. Many researchers have attempted to understand the electrical properties of metal/2D SC contacts and have revealed that they have unique features distinct from those of 3D SC counterparts. In this work, we investigated the surface potential (Vsurf) of exfoliated MoS2 flakes on bare and Au-coated SiO2/Si substrates using Kelvin probe force microscopy. The Vsurf of MoS2 single layers was larger on the Au-coated substrates than on the bare substrates; our theoretical calculations indicate that this may be caused by the formation of a larger electric dipole at the MoS2/Au interface leading to a modified band alignment. Vsurf decreased as the thickness of the flakes increased until reaching the bulk value at a thickness of ~20 nm on the bare and ~80 nm on the Au-coated substrates, respectively. This thickness-dependence of Vsurf was attributed to electrostatic screening in the MoS2 layers. Thus, a difference in the thickness at which the bulk Vsurf appeared suggests that the underlying substrate has an effect on the electric-field screening length of the MoS2 flakes. This work provides important insights to understand the band alignment and the charge transport at the metal/2D SC interfaces.
ZnO has attracted growing research attention as a strong candidate material for various optoelectronic device applications. It is important to understand and control the interactions between surface plasmons (SPs) and charge carriers in metal-ZnO hybrid nanostructures to improve the optical characteristics. In this work, we fabricated ZnO/Ag nanogratings using patterned polymer and Si templates. Excitation of the surface plasmon polaritons (SPPs) well explained the optical reflectance and photoluminescence spectra of the ZnO/Ag nanogratings [1,2]. Nanoscopic mapping of surface photovoltage (SPV), i.e., changes in the surface potential under illumination, obtained by Kelvin probe force microscopy (KPFM) enabled us to investigate the local behaviors of the photo-generated carriers. The magnitude and relaxation time of the measured SPV depended on the wavelength and polarization of the incident light [3]. This showed that the SP excitation in the nanogratings directly affected the creation and recombination processes of the charge carriers. All of these results suggested that SPV measurements using KPFM should be very useful for studying the SP effects in metal/semiconductor hybrid nanostructures.
References
[1] Gwon et al., Opt. Express 19, 5895 (2011).
[2] Gwon et al., ACS Appl. Mater. Interfaces. 6, 8602 (2014).
[3] Gwon et al., Sci. Rep. 5, 16727; doi: 10.1038/srep16727 (2015).
We fabricated Si nanopillar (NP) arrays using e-beam lithography and coated them with poly(3-hexylthiophene-2,5-diyl) (P3HT) organic semiconductor layers. Optical reflection spectra showed that Mie resonance significantly increased the scattering cross-sections of the NPs and strongly concentrated incident light in the NPs. Such concentrated light should produce numerous charge carriers and affect the subsequent drift/diffusion of the carriers. Surface photovoltage (SPV), defined as the difference of the surface potential in dark and under light, could reveal the formation and separation of the photo-generated carriers. Especially, Kelvin probe force microscopy technique allowed us to obtain real space SPV maps with nanoscopic spatial resolution. The SPV values at the NP tops were much larger than those at the flat regions around the NPs. This study would provide us insights into improving performance of organic/inorganic hybrid nanostructure-based devices.
Recently, extraordinary physical properties of two-dimensional transition metal dichalcogenides (TMDs) have attracted great attention for various device applications, including photodetectors, field effect transistors, and chemical sensors. There have been intensive research efforts to grow high-quality and large area TMD thin films, and chemical vapor deposition (CVD) techniques enable scalable growth of layered MoS2 films. We investigated the roles of Au nanoparticles (NPs) on the transport and photoresponse of the CVD-grown MoS2 thin films. The Au NPs increased conductivity and enabled fast photoresponse of MoS2 thin films. These results showed that decoration of metal NPs were useful means to tailor the physical properties of CVD-grown MoS2 thin films. To clarify the roles of the metal particles, we compared the transport characteristics of MoS2 thin films with and without the Au NPs in different gas ambient conditions (N2, O2, and H2/N2). The ambient-dependence of the MoS2 thin films allowed us to discuss possible scenarios to explain our results based on considerations of band bending near the Au NPs, gas adsorption/desorption and subsequent charge transfer, and charge scattering/trapping by defect states.
We investigated optical properties of several 2D arrangements of Au nanoparticles (NPs), including dimer, trimer,
hexamer, and heptamer, using finite-difference time-domain method. The heptamerous system, consisting of a central
NP and six NPs forming a hexagonal shape, exhibited Fano resonance. We found that the intensity and position of the
Fano resonance peak depended on the size of the central NP and its distance from the other six NPs. Furthermore we
studied 3D configurations, where the location of the central NP was moved along the perpendicular direction to the plane
containing the other NPs. Such vertical displacement of the central NP influenced the plasmonic coupling between NPs
and affected the extinction spectra. Such 3D NP systems could provide us alternative approaches to tune the optical
properties of the plasmonic NPs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.