Large-area and transparent all-dielectric metasurfaces supporting photonic bound states in the continuum (BICs) offer several inherent advantages for highly sensitive biosensing applications. A BIC represents a unique mode within the energy spectrum of free-space waves that remains uncoupled with free-space radiation, resulting in a divergent radiative Q-factor and a topological singularity in reciprocal space. In this study, the synergistic combination of photonic crystal slabs (PhCS) supporting bound states in the continuum (BIC) with aptamers and molecularly imprinted polymers (MIPs) offers a groundbreaking approach to achieving ultrahigh sensitivity in detecting mycotoxins in wine and cytokines in artificial saliva. Mycotoxins, toxins produced by certain fungi, pose significant health risks when present in food and beverages like wine. Our research endeavors represent a significant step forward in the field of biosensing, offering a pathway toward the development of versatile, efficient, and reliable sensing platforms with broad applications across scientific, industrial, and societal domains.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.