With the increasing amount of available medical data, computing power and network speed, modern medical imaging is facing an unprecedented amount of data to analyze and interpret. Phenomena such as Big Data-omics stemming from several diagnostic procedures and novel multi-parametric imaging modalities tend to produce almost unmanageable quantities of data. The paper addresses the aforementioned context by assuming that a novel paradigm in massive data processing and automation becomes necessary in order to improve diagnostics and facilitate personalized and precision medicine for each patient. Traditional machine learning concepts have demonstrated many shortcomings when it comes to correctly diagnose fatal diseases. At the same time static graph networks are unable to capture the fluctuations in brain processing and monitor disease evolution. Therefore, artificial intelligence and deep learning are increasingly applied in oncologic medical imaging because they excel at providing quantitative assessments of biomedical imaging characteristics. On the other hand, novel concepts borrowed from modern control have paved the path for a dynamic graph theory that can predict neurodegenerative disease evolution and replace longitudinal studies. We chose two important topics, brain data processing and oncologic imaging to show the relevance of these concepts. We believe that these novel paradigms will impact multiple facets of radiology but are convinced that it is unlikely that they will replace radiologists any time in the near future since there are still many challenges in the clinical implementation.
Imaging connectomics emerged as an important field in modern neuroimaging to represent the interaction of structural and functional brain areas. Static graph networks are the mathematical structure to capture these interactions modeled by Pearson correlations between the representative area signals. Dynamical functional resting state networks seen in most fMRI experiments can not be represented by the classic correlation graph network. The changes in brain connectivity observed in many neuro-degenerative diseases in longitudinal data series suggest that more sophisticated graph networks to capture the dynamical properties of the brain networks are required. Furthermore, certain brain areas seem to act as ”disease epicenters” being responsible for the spread of neuro-degenerative diseases. To mathematically describe these aspects, we propose a novel framework based on pinning controllability applied to dynamic graphs and seek to determine the changes in the ”driver nodes” during the course of the disease. In contrast to other current research in pinning controllability, we aim to identify the best driver nodes describing disease evolution with respect to connectivity changes and location of the best driver nodes in functional 18F-Fluorodeoxyglucose Positron Emission Tomography (18FDG-PET) and structural Magnetic Resonance Imaging (MRI) connectivity graphs in healthy controls (CN), and patients with mild cognitive impairment (MCI), and Alzheimer’s disease (AD). We present the theoretical framework for determining the best driver nodes in connectivity graphs and their relation to disease evolution in dementia. We revolutionize the current graph analysis in brain networks and apply the concept of dynamic graph theory in connection with pinning controllability to reveal differences in the location of ”disease epicenters” that play an important role in the temporal evolution of dementia. The described research will constitute a leap in biomedical research related to novel disease prediction trajectories and precision dementia therapies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.