William Brzozowski, David Robertson, Ewan Fitzsimons, Henry Ward, Jennifer Keogh, Alasdair Taylor, Maria Milanova, Michael Perreur-Lloyd, Zeshan Ali, Andrew Earle, Daniel Clarkson, Robyn Sharman, Martyn Wells, Phil Parr-Burman
This paper will present an overview of the LISA (Laser Interferometer Space Antenna) optical bench and discuss the innovative methods developed to analyse and mitigate significant engineering challenges. There are two optical benches for each of the three LISA spacecraft. The optical bench consists of numerous components which form the paths of the interferometers used to measure the displacement changes caused by gravitational waves. Given each spacecraft is separated by 2.5 million Km, a laser beam sent from one to another arrives with a significantly lower irradiance than on departure. It is in part because of this that various engineering challenges are faced by the LISA OB. This is alongside the extremely demanding nature of measuring gravitational waves at a sensitivity of pico-meters per root-Hertz.
KEYWORDS: Sensors, Camera shutters, Coronagraphy, CCD image sensors, Space operations, Temperature sensors, Solar processes, Electronics, Objectives, Power supplies
Accurate prediction of the arrival of solar wind phenomena, in particular coronal mass ejections (CMEs), is becoming more important given our ever-increasing reliance on technology. SCOPE is a coronagraph specifically optimised for operational space weather prediction, designed to provide early evidence of Earth-bound CMEs. In this paper, we present results from phase A/B1 of the instrument’s development, which included conceptual design and a program of breadboard testing.
We describe the conceptual design of the instrument. In particular, we explain the design and analysis of the straylight rejection baffles and occulter needed to block the image of the solar disc, in order to render the much fainter corona visible. We discuss the development of in-house analysis code to predict the straylight diffraction effects that limit the instrument’s performance, and present results, which we compare against commercially available analysis tools and the results from breadboard testing. In particular, we discuss some of the challenges of predicting straylight effects in this type of instrument and the methods we have developed for overcoming them.
We present the test results from an optical breadboard, designed to verify the end-to-end straylight rejection of the instrument. The design and development of both the breadboard and the test facility is presented. We discuss some of the challenges of measuring very low levels of straylight and how these drive the breadboard and test facility design. We discuss the test and analysis procedures developed to ensure a representative, complete characterisation of the instrument’s straylight response.
The High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph (HARMONI) will be one of the instruments installed on ESO's 39-meter Extremely Large Telescope (ELT) at first light. The instrument will operate from 0.47 - 2.45 μm with Δλ/λ = 3,000 - 17,000. On-sky spatial pixels (spaxels) are divided between four spectrographs, each equipped with 11 transmission diffraction gratings to cover the ranges of wavelengths and spectral resolutions. These spectrographs will be cooled to ~140 K to decrease thermal radiation at longer wavelengths.
In all configurations, the diffraction grating will lose a greater fraction of scientific light than any other single optic in the instrument. Additionally, manufacturers are often unable to measure the fraction of transmitted light at HARMONI's longest wavelengths. For these reasons, we have developed a setup to measure the efficiencies of transmission diffraction gratings across HARMONI's bandpass. The setup uses modulated signals, a single detector, and a lock-in amplifier to minimize sources of systematic errors. A modified version of this setup may be used to measure stray light. These setups and initial results are presented.
HARMONI is an Integral Field Spectrograph (IFS) for ESO’s ELT. It has been selected as the first light spec- trograph and will provide the workhorse spectroscopic capabilities for the ELT for many years. HARMONI is currently at the PDR-level and the current design for the HARMONI IFS consists of a number of spaxel scales sampling down to the diffraction limit of the telescope. It uses a field splitter and image slicer to divide the field into 4 sub-units, each providing an input slit to one of four nearly identical spectrographs. All spectrographs will operate at near infrared wavelengths (0.81-2.45 micrometers), sampling different parts of the spectrum with a range of spectral resolving powers (3300, 7000, 18000). In addition, two of the four spectrographs will have a Visible capability (0.5-0.83 micrometers) operating with seeing-limited observations. This proceeding presents an overview of the opto-mechanical design and specifications of the spectrograph units for HARMONI.
HARMONI (High Angular Resolution MOnolithic Integral field spectrograph)1 is a planned first-light integral field spectrograph for the Extremely Large Telescope. The spectrograph sub-system is being designed, developed, and built by the University of Oxford. The project has just completed the Preliminary Design Review (PDR), with all major systems having nearly reached a final conceptual design. As part of the overall prototyping and assembly, integration, and testing (AIT) of the HARMONI spectrograph, we will be building a full-scale engineering model of the spectrograph. This will include all of the moving and mechanical systems, but without optics. Its main purpose is to confirm the AIT tasks before the availability of the optics, and the system will be tested at HARMONI cryogenic temperatures. By the time of the construction of the engineering model, all of the individual modules and mechanisms of the spectrograph will have been prototyped and cryogenically tested. The lessons learned from the engineering model will then be fed back into the overall design of the spectrograph modules ahead of their development.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.