We report studies of material processing using the VUV F2 laser which, by virtue of its low threshold, high resolution 'machining' capability, may bring advantage to laser-based optoelectronic and photonic device fabrication. For example, probe beam deflection and etch rate studies of polymethylmethacrylate (PMMA) show this has a low ablation threshold, FT=20mJcm-2, and a large effective absorption coefficient, 1.6 x 105 cm-1, at 157nm, permitting high-resolution etching at modest fluence. The smooth ablated surfaces and low degree of thermal damage obtained with this laser make it well suited to machining structures such as relief gratings in PMMA. We also describe new results on producing fiber Bragg gratings with the 157nm laser. It is shown that these gratings can be written in a non-sensitized single mode fiber (Corning HI 980) with a low fluence and low total dose.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.