The resolution of optical systems, formulated as the smallest possible distance between two point sources for which they still can be dissolved, was for a long time believed to be limited by diffraction, formulated by the Rayleigh criterion. Recent advancements in quantum metrology have shown, by evaluation of the Quantum Cramér Rao bound (QCRB), that the Rayleigh criterion is not a fundamental limit. In our experiment, spatial mode demultiplexing (SPADE) is used to estimate the separation of the sources orders of magnitude below the Rayleigh limit. The experiment is extended to incorporate the measurement of additional parameters, such as power imbalance and centroid position of the two sources, bringing it closer to real-world applicability.
We experimentally implement the separation estimation between to incoherent optical sources. Our method, relying on spatial-mode demultiplexing and intensity measurements, saturates the Cramèr-Rao bound, with a five orders of magnitude gain compared to the Rayleigh limit.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.