Doping of the clad layers in thin GaAs/GaInP heterostructures, displaces the band energy discontinuity, modifies
the carrier concentration in the active GaAs region and changes the quality of the hetero-interfaces. As a result,
internal and consequently external quantum efficiencies in the double heterostructure are affected. In this paper,
the interfacial quality of GaAs/GaInP heterostructure is systematically investigated by adjusting the doping
level and type (n or p) of the cladding layer. An optimum structure for laser cooling applications is proposed.
Understanding and quantifying nonradiative recombination is a critical factor for the successful laser cooling of semiconductors. The usual approach to measuring the nonradiative lifetime employs pulsed photoexcitation and monitors the luminescence decay via time-resolved photon counting. We present an alternative approach that
employs phase fluorometry with a lock-in amplifier. A sinusoidally modulated diode laser is used for excitation. Lifetime data are extracted from the frequency dependent phase shift and amplitude response of the photolumi-nescence signal, detected by a photomultiplier tube. Samples studied include high quality AlGaAs/GaAs/AlGaAs and GaInP/GaAs/GaInP double heterostructures, grown by MBE and MOCVD. Data over a temperature range from 10 to 300 K is compared with results obtained in time-domain measurements.
One of the challenges of laser cooling a semiconductor is the typically high index of refraction (greater than 3), which limits efficient light output of the upconverted photon. This challenge is proposed to be met with a novel concept of coupling the photon out via a thin, thermally insulating vacuum gap that allows light to pass efficiently by frustrated total internal reflection. This study has the goal of producing a test structure that allows investigation of heat transport across a 'nanogap' consisting of a thin film supported over a substrate by an array of nanometer-sized posts. The nanogap is fabricated monolithically by first creating a film of SiO2 on a silicon substrate, lithographically defining holes in the SiO2, and covering this structure including the holes with silicon. Selective lateral etching will then remove the SiO2, leaving behind a thin gap between two Si layers spaced apart by nanometer-scale Si posts. Demonstration of this final step by successfully undercutting the a-Si upper layer due to the hydrophobic nature of silicon and the slow etch rate of buffered oxide etch in the small gap has proved to be problematic. Arriving at a feasible solution to this conundrum is the current objective of this project in order to begin investigating the thermal conductivity properties of the structure.
We demonstrate a non-contact, spectroscopic technique to measure
the temperature change of semiconductors with very high precision.
A temperature resolution of less than 100 μK has been obtained with
bulk GaAs. This scheme finds application in experiments to study
laser cooling of solids. We measure a record external quantum
efficiency of 99% for a GaAs device.
Laser cooling in semiconductor structures due to anti-Stokes luminescence is reviewed. Theoretical background considering luminescence trapping and red-shifting, the effect of free carrier and back-ground absorption, Pauli band-blocking, and the temperature-dependence of various recombination mechanisms are discussed. Recent experimental results demonstrating record external quantum efficiencies (EQE) in GaAs/GaInP heterostructures are described, and conditions favorable for the first observation of laser cooling in semiconductors are discussed.
We present an overview of laser cooling of solids. In this
all-solid-state approach to refrigeration, heat is removed radiatively when an engineered material is exposed to high power laser light. We report a record amount of net cooling (88 K below ambient) that has been achieved with a sample made from doped fluoride glass. Issues involved in the design of a practical laser cooler are presented. The possibility of laser cooling of semiconductor sensors is discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.