KEYWORDS: Telescopes, Spectrographs, Calibration, Fabry Perot interferometers, Observatories, Control systems, Sensors, Control software, Equipment, Domes
MARVEL is a new facility at the Roque de los Muchachos Observatory (La Palma) which comprises an array of four 0.8m telescopes, each feeding via fibre link into a single high-resolution spectrograph. The facility will provide dedicated target vetting and follow-up capability to support large exoplanet surveys through radial velocity measurements with precision at the metre-per-second level. The observatory site, with four new domes and a standalone stabilised spectrograph building, will soon be complete and ready for hardware installation and commissioning. Here we present an overview of the facility and a status update on several component subsystems: the telescope hardware, control software, and scheduling software; the fibre injection units at each telescope; the optical and mechanical design and tolerances of the spectrograph and vacuum vessel; the calibration system hardware and calibration strategies; and the progress in development of the instrument’s data reduction pipeline.
In this paper, we describe the wide-field spectroscopic survey telescope (WST) project. WST is a 12-metre wide-field spectroscopic survey telescope with simultaneous operation of a large field-of-view (3 sq. degree), high-multiplex (20,000) multi-object spectrograph (MOS), with both a low and high-resolution modes, and a giant 3×3 arcmin2 integral field spectrograph (IFS). In scientific capability, these specifications place WST far ahead of existing and planned facilities. In only 5 years of operation, the MOS would target 250 million galaxies and 25 million stars at low spectral resolution, plus 2 million stars at high resolution. Without need for pre-imaged targets, the IFS would deliver 4 billion spectra offering many serendipitous discoveries. Given the current investment in deep imaging surveys and noting the diagnostic power of spectroscopy, WST will fill a crucial gap in astronomical capability and work in synergy with future ground and space-based facilities. We show how it can address outstanding scientific questions in the areas of cosmology; galaxy assembly, evolution, and enrichment, including our own Milky Way; the origin of stars and planets; and time domain and multi-messenger astrophysics. WST’s uniquely rich dataset may yield unforeseen discoveries in many of these areas. The telescope and instruments are designed as an integrated system and will mostly use existing technology, with the aim to minimise the carbon footprint and environmental impact. We will propose WST as the next European Southern Observatory (ESO) project after completion of the 39-metre ELT.
The TOLIMAN mission will fly a low-cost space telescope designed and led from the University of Sydney. Its primary science targets an audacious outcome in planetary astrophysics: an exhaustive search for temperateorbit rocky planets around either star in the Alpha Centauri AB binary, our nearest neighbour star system. By performing narrow-angle astrometric monitoring of the binary at extreme precision, any exoplanets betray their presence by gravitationally, engraving a tell-tale perturbation on the orbit. Recovery of this challenging signal, only of order micro-arcseconds of deflection, is normally thought to require a large (meter-class) instrument. By implementing significant innovations optical and signal encoding architecture, the TOLIMAN space telescope aims to recover such signals with a telescope aperture of only a 12.5cm. Here we describe the key features of the mission: its optics, signal encoding and the 16U CubeSat spacecraft bus in which the science payload is housed - all of which are now under construction. With science operations forecast on a timescale of a year, TOLIMAN aims to determine if the Sun’s nearest neighbour hosts a potential planetary stepping stone into the galaxy. Success would lay down a visionary challenge for futuristic high speed probe technologies capable of traversing the interstellar voids.
MAROON-X is a fiber-fed, optical EPRV spectrograph at the 8-m Gemini North Telescope on Mauna Kea, Hawai’i. MAROON-X was commissioned as a visiting instrument in December 2019 and is in regular use since May 2020. Originally designed for RV observations of M-dwarfs, the instrument is used for a broad range of exoplanet and stellar science cases and has transitioned to be the second-most requested instrument on Gemini North over a number of semesters. We report here on the first two years of operations and radial velocity observations. MAROON-X regularly achieves sub-m/s RV performance on sky with a short-term instrumental noise floor at the 30 cm/s level. We will discuss various technical aspects in achieving this level of precision and how to further improve long-term performance
MAROON-X is a fiber-fed, red-optical, high precision radial velocity spectrograph recently commissioned at the Gemini North telescope on Mauna Kea, Hawai’i. With a resolving power of 85,000 and a wavelength coverage of 500–920 nm, it delivers radial velocity measurements for late K and M dwarfs with sub-50 cm s−1 precision. MAROON-X is currently the only optical EPRV spectrograph on a 8 m-class telescope in the northern hemisphere and the only EPRV instrument on a large telescope with full access by the entire US comm report here on the results of the commissioning campaign in December 2019 and early science results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.