Properties of monoclinic β-Ga2O3 are strongly dependent upon orientation. In the case of optical properties, polarization can reveal differences in optical bandgap and absorptions related to transition metal ions. This phenomenon is known as pleochroism and has been extensively studied in minerology. β-Ga2O3 bulk single crystals doped with Zn, Mn, Cr, or Cu were grown by the Czochralski and vertical gradient freeze methods. Ultraviolet-visible-near infrared spectroscopy and photoluminescence (PL) revealed polarization- and orientation-dependent optical absorptions in β-Ga2O3. Crystals were annealed in reducing and oxidizing environments in an attempt to alter the intensities of absorptions characteristic to the different transition metal oxidation states in a given ligand field. Visible pleochroism was strongest in (001) oriented Mndoped samples as shown by polarized optical microscopy. All samples were electrically insulating, indicative of acceptor doping, aside from Cr-doped samples where Cr acts as a deep donor.
Much excitement has surrounded the accelerating development of β-Ga2O3 for electronics due to its ultrawide band gap, high breakdown voltage, compatibility with many dopants, and comparative ease of producing large substrates via meltgrowth techniques. Our research has focused on growth and characterization of Czochralski (CZ) and vertical gradient freeze (VGF) single crystals of β-Ga2O3 with various dopants, including donors (Zr, Hf, Cr), acceptors (Mg, Zn, Fe, Ni, Cu), and alloying elements (Al). We find in general that doping in CZ and VGF materials can be different and sometimes non-uniform due to the interaction with crucible material (Ir), selective evaporation, and thermal profile. We have also explored the creation and identification of gallium vacancies (VGa) through annealing, by using positron annihilation spectroscopy (PAS), hydrogenated Fourier Transform Infrared (FTIR) spectroscopy, and electrical measurements. Different analysis techniques probe different spatial and depth averages, and thus careful consideration must be given to correctly interpret results and significance of defect concentrations determined. Insights from our work to date are offered, in terms of their applicability to devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.