Stochastic printing variations are a challenge for EUV lithography and it is well known that these variations worsen if exposed out-of-focus because the EUV image contrast degrades. The introduction of 0.55NA will improve image contrast at a reduced depth-of-focus. This paper will describe how best focus planes differences between features can be used to design focus-sensitive metrology targets that can report EUV focus if used in combination with an optical metrology tool. Moreover, the developed target methodology ensures design rules compliance. The focus metrology target concept is experimentally demonstrated using a 24nm pitch line/spacer in combination with a low-n EUV mask absorber material, metal-oxide-resist (MOR), and a 0.33NA EUV scanner. The observed focus variation is modeled to quantify how much content is correctable using scanner feedback. This illustrates that on-product focus metrology can improve focus performance if combined with advanced process control.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.