A detailed knowledge of the internal flow distribution inside a zinc-nickel flow battery is of critical importance to ensure smooth flow of the electrolyte through the battery cell and better operation of the device. Information of this type can be used as a useful means of early detection of zinc deposition and dendrite formation inside the cell, negative factors which affect the flow and thus which can lead to internal short circuiting, this being a primary failure mode of these types of batteries. This deposition occurs at low pH levels when zinc reacts with the electrolyte to form solid zinc oxide hydroxides. Traditionally, manual inspection is conducted, but this is time consuming and costly, only providing what are often inaccurate results – overall it is an impractical solution especially with the wider use of batteries in the very near future. Fibre Bragg grating (FBG) sensors integrated inside the flow cell offer the advantage of measuring flow changes at multiple locations using a single fibre and that then can be used as an indicator of the correlation between the internal flow distribution and the deposition characteristics. This work presents an initial study, where two networks of FBGs have been installed and used for flow change detection in an active zinc-nickel flow battery. Data have been obtained from the sensor networks and information of battery performance completed and summarized in this paper. The approach shows promising results and thus scope for the future research into the development of this type of sensor system.
Deposition of thin diamond-like carbon films in etched fiber Bragg gratings as substrate was used to increase the sensitivity of a fiber Bragg grating refractometer. The nanometric film was also used for tuning the sensitivity to a maximum for a desired application of liquid refractive index measurement. Simulation and experiments were performed in order to understand the light propagation inside the modified optical fiber and its effects in the refractometry measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.