David Torres, Ori Weisberg, Gil Shapira, Charalambos Anastassiou, Burak Temelkuran, Max Shurgalin, Steven Jacobs, Rokan Ahmad, Tairan Wang, Uri Kolodny, Stanley Shapshay, Zimmern Wang, Anand Devaiah, Urmen Upadhyay, Jamie Koufman
The CO2 laser is the most widely used laser in laryngology, offering very precise cutting, predictable depth of penetration, and minimal collateral damage due to the efficient absorption of CO2 laser by water. Surgical applications of CO2 laser in microlaryngoscopy include removal of benign lesions and early-stage laryngeal cancer. A Transoral Laser Microsurgery (TLM) approach is routinely employed for treatment of laryngeal cancer; however, the role of TLM in advanced malignant lesions remains controversial. The main limiting factor of TLM is the restrictive exposure of the endoscopes combined with the limited cutting ability offered by the existing micromanipulator, enabling cutting only along the straight line-of-sight axis. A flexible fiber delivery system offering a very high quality output beam can offer tangential cutting and can therefore significantly enhance the existing surgical capabilities. Moreover, a flexible fiber for CO2 laser delivery can be used for treatment of benign conditions through flexible endoscopy in an office setting using local anesthesia. OmniGuide Communications Inc. (OGCI) has fabricated a photonic bandgap fiber capable of flexibly guiding CO2 laser energy. Results of laryngeal in-vivo and in-vitro animal studies will be presented. We will discuss the system setup, fiber performance and clinical outcomes. In addition we will present the results of the first human treatment and highlight additional otolaryngology conditions, which will likely benefit from the new technology herein presented.
KEYWORDS: Solitons, Optical microcavities, Spatial solitons, Chemical species, Transparency, Photonic crystals, Dispersion, Data processing, All optical signal processing, Fusion energy
We present two potentially interesting new venues in all-optical signal processing. First, we demonstrate experimentally that collisions between vector (Manakov-like) solitons involve energy exchange; this feature could be explored for all-optical signal processing. Second, our detailed theoretical studies show how inserting materials that support electro-magnetically induced transparency into microcavities enables design of microcavities with extraordinarily long lifetimes, and enables all-optical signal processing at single photon power levels.
Laser cutting of human bone and tissue is one of the oldest and most widespread applications of biophotonics. Due to the unique absorption of different kinds of tissue, choosing an appropriate laser wavelength allows selective ablation of tissue. Consequently, a large variety of laser sources with different emission wavelengths have been successfully applied to an equally large variety of medical indications. However, only a limited set of successful tissue-interaction experiments have translated into standard minimally-invasive procedures. One of the main reasons for this discrepancy between medical research and clinical practice is the lack of a commercially viable, flexible, and easy-to-use fiber optic beam delivery systems for wavelengths longer than 2 μm. In this paper, we will show how OmniGuide fibers, a new type of photonic bandgap fibers, could solve this problem. Recent performance data will be presented for both straight and bent fibers, including losses and power capacity, for delivery of CO2 lasers. We will also highlight medical procedures where these fibers could find first applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.