Single-cell RNA-seq and other profiling assays have opened new windows into understanding cells' properties, regulation, dynamics, and function at unprecedented resolution and scale. However, these assays are inherently destructive, precluding us from tracking their temporal dynamics. Here, we present Raman2RNA (R2R), an experimental and computational framework to infer single-cell expression profiles in live cells through Raman microscopy images and domain translation using Generative Adversarial Networks. We demonstrate R2R in reprogramming mouse fibroblasts or differentiating mouse embryonic stem cells and show that their expression profiles can be accurately predicted in live cells. R2R paves the way to understanding gene expression dynamics at scale in vitro and in vivo.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.