Multi-modal learning (e.g., integrating pathological images with genomic features) tends to improve the accuracy of cancer diagnosis and prognosis as compared to learning with a single modality. However, missing data is a common problem in clinical practice, i.e., not every patient has all modalities available. Most of the previous works directly discarded samples with missing modalities, which might lose information in these data and increase the likelihood of overfitting. In this work, we generalize the multi-modal learning in cancer diagnosis with the capacity of dealing with missing data using histological images and genomic data. Our integrated model can utilize all available data from patients with both complete and partial modalities. The experiments on the public TCGA-GBM and TCGA-LGG datasets show that the data with missing modalities can contribute to multi-modal learning, which improvesthe model performance in grade classification of glioma cancer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.