The application of compressive sensing (CS) techniques for the hyperspectral (HS) imaging is very appealing since the acquisition of HS images is demanding in terms hardware and acquisition time, and since the application of CS framework matches well the HS imaging task, which involves capturing huge amount of typically very redundant data. During the last decade, we developed several CS HS imaging systems, which have demonstrated orders of magnitude reduction of the acquisition time and of storage requirements, improved signal-to-noise ratio, and reduction of the systems’ size and weight. In this paper we demonstrate how these systems can further benefit from employing deep learning (DL) tools for post-processing of the compressively sensed hyperspectral data. We overview some DL techniques that we have developed for improving the HS image reconstruction and target detection.
Hyperspectral imaging is applied in a wide range of defense, security and law enforcement applications. The spectral data caries valuable information for tasks such as identification, detection, and classification. However, the capturing of the spectral information, together with the spatial information, requires a significant acquisition effort. In the recent years we have developed several compressive hyperspectral imaging techniques demonstrating reduction of the captured data by at least an order of magnitude. However, compressive sensing techniques typically require computational heavy and time consuming iterative reconstruction algorithms. The computational burden is even more prominent in compressive spectral imaging due to the large amount of data involved. In this work we demonstrate the utilization of a convolutional neural network (CNN) for the reconstruction of spectral images captured with our Compressive Sensing -Miniature Ultraspectral Imager (CS-MUSI). We discuss the challenges of training the CNN for CS-MUSI and analyze the CNNbased reconstruction performance.
During the past years, several compressive spectral imaging techniques were developed. With these techniques, an optically compressed version of the spectral datacube is captured. Consequently, the information about the object and targets is captured in a lower dimensional space. A question that rises is whether the reduction of the captured space affects the target detection performance. The answer to this question depends on the compressive spectral imaging technique employed. In most compressive spectral imaging techniques, the target detection performance is deteriorated. We show that our recently introduced technique, dubbed Compressive Sensing Miniature Ultra-Spectral Imaging (CSMUSI), yields similar target detection and false detection rates to that of conventional hyperspectral cameras.
Compressive sensing theory was proposed to deal with the high quantity of measurements demanded by traditional hyperspectral systems. Recently, a compressive spectral imaging technique dubbed compressive sensing miniature ultraspectral imaging (CS-MUSI) was presented. This system uses a voltage controlled liquid crystal device to create multiplexed hyperspectral cubes. We evaluate the utility of the data captured using the CS-MUSI system for the task of target detection. Specifically, we compare the performance of the matched filter target detection algorithm in traditional hyperspectral systems and in CS-MUSI multiplexed hyperspectral cubes. We found that the target detection algorithm performs similarly in both cases, despite the fact that the CS-MUSI data is up to an order of magnitude less than that in conventional hyperspectral cubes. Moreover, the target detection is approximately an order of magnitude faster in CS-MUSI data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.