A next-generation medium-energy (100 keV to 100 MeV) gamma-ray observatory will greatly enhance the identification and characterization of multimessenger sources in the coming decade. Coupling gamma-ray spectroscopy, imaging, and polarization to neutrino and gravitational wave detections will develop our understanding of various astrophysical phenomena including compact object mergers, supernovae remnants, active galactic nuclei and gamma-ray bursts. An observatory operating in the MeV energy regime requires technologies that are capable of measuring Compton scattered photons and photons interacting via pair production. AstroPix is a monolithic high voltage CMOS active pixel sensor which enables future gamma-ray telescopes in this energy range. AstroPix’s design is iterating towards low-power (∼1.5mW/cm2), high spatial (500 μm pixel pitch) and spectral (<5 keV at 122 keV) tracking of photon and charged particle interactions. Stacking planar arrays of AstroPix sensors in three dimensions creates an instrument capable of reconstructing the trajectories and energies of incident gamma rays over large fields of view. A prototype multi-layered AstroPix instrument, called the AstroPix Sounding rocket Technology demonstration Payload (A-STEP), will test three layers of AstroPix “quad chips” in a suborbital rocket flight. These quad chips (2×2 joined AstroPix sensors) form the 4×4 cm2 building block of future large area AstroPix instruments, such as ComPair-2 and AMEGO-X. This payload will be the first demonstration of AstroPix detectors operated in a space environment and will demonstrate the technology’s readiness for future astrophysical and nuclear physics applications. In this work, we overview the design and state of development of the A-STEP payload.
This paper details preliminary photon measurements with the monolithic silicon detector ATLASPix, a pixel detector built and optimized for the CERN experiment ATLAS. The goal of this paper is to determine the promise of pixelated silicon in future space-based gamma-ray experiments. With this goal in mind, radioactive photon sources were used to determine the energy resolution and detector response of ATLASPix; these are novel measurements for ATLASPix, a detector built for a ground-based particle accelerator. As part of this project a new iteration of monolithic Si pixels, named AstroPix, have been created based on ATLASPix, and the eventual goal is to further optimize AstroPix for gamma-ray detection by constructing a prototype Compton telescope. The energy resolution of both the digital and analog output of ATLASPix is the focus of this paper, as it is a critical metric for Compton telescopes. It was found that with the analog output of the detector, the energy resolution of a single pixel was 7.69 ± 0.13% at 5.89 keV and 7.27 ± 1.18% at 30.1 keV, which exceeds the conservative baseline requirements of 10% resolution at 60 keV and is an encouraging start to an optimistic goal of <2% resolution at 60 keV. The digital output of the entire detector consistently yielded energy resolutions that exceeded 100% for different sources. The analog output of the monolithic silicon pixels indicates that this is a promising technology for future gamma-ray missions, while the analysis of the digital output points to the need for a redesign of future photon-sensitive monolithic silicon pixel detectors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.