Excitons, bound electron-hole pairs, possess distinct physical properties from free electrons and holes that can
be employed to improve the performance of optoelectronic devices. In particular, the signatures of excitons are
enhanced optical absorption and radiative emission. These characteristics could be of major benefit for the laser
cooling of semiconductors, a process which has stringent requirements on the parasitic absorption of incident
radiation and the internal quantum efficiency. Here we experimentally demonstrate the dominant ultrafast excitonic
super-radiance of our quantum well structure from 78 K up to room temperature. The experimental results are
followed by our detailed discussions about the advantages and limitations of this method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.