Las Cumbres Observatory (LCOGT) operates a global network of robotic 0.4, 1.0, and 2.0-meter telescopes to facilitate scientific research and education in time-domain astronomy. LCOGT’s flagship educational program, Global Sky Partners (GSP), awards up to 1500 hours per year of telescope time to individuals and organizations that run their own, fully supported, educational programs. The GSP has a presence in 40 countries and 45% of the Partners target under-served, under-represented, and developing world audiences. The degradation and obsolescence of the original 0.4-meter telescope network prompted LCOGT to update the fleet of 10 telescopes to a new system consisting of predominantly off-the-shelf products. New PlaneWave DeltaRho 350 telescopes with Gemini Focuser/Rotators, LCOGT filter wheels, and QHY600 CMOS cameras, complement the original, custom-built mount. The deployment of all ten telescopes was completed in March 2024. We describe the design and performance of this new system and its components. We comment on modifications made to the QHY600 cameras, as well as on the treatment of random telegraph noise of its CMOS detectors within our data processing system BANZAI. The new telescope network supports the GSP program as well as multiple key science projects, including follow-up observations for the TESS satellite mission.
Astrophysical phenomena occur on a range of timescales, and to properly characterize them, observations must be made at appropriate intervals on instrumentation determined by the scientific goals of the study. The traditional model of scheduling telescope time in blocks of consecutive nights and requiring the investigators to operate the instrument (either in person or remotely) is not optimal for this science. A queue-scheduled approach to time allocation can relieve the personal and financial burden of interactive observing runs. This is particularly powerful when requests for observations can be made through a programmatic interface, which provides not just a convenient tool for all astronomy programs, but also the opportunity to build fully automated observing programs. This will be an essential component of projects making follow-up observations for modern surveys that produce millions of alerts per night, as much of the science return will depend upon obtaining classification and characterization data rapidly and efficiently, as well as for coordination of observations across multiple facilities. The AEON Network is an initiative to build a programmatically accessible, queue-scheduled and user driven network of telescopes ideal for modern astronomical observing programs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.