We compare femtosecond hollow-core multifilament arrays created in the air with a TEM11 phase plate and a Dammann diffraction grating under additional loose focusing. Phase shifts introduced into the beam by the phase plate lead to zero intensity lines, which prevent transverse energy flow and filament merging. The Dammann grating forms four spatially separated energy reservoirs near the focus due to the interference. Transverse multifilament structure obtained using the Dammann grating is more resistant to phase and amplitude distortions of the initial laser beam. Plasma density inside the multifilament arrays does not exceed the value in a single filament, obtained without DOEs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.