Laparoscopic procedures can be an attractive treatment option for liver resection, with a shortened hospital stay and reduced morbidity compared to open surgery. One of the central challenges of this technique is visualisation of concealed structures within the liver, particularly the vasculature and tumourous tissue. As photoacoustic (PA) imaging can provide contrast for haemoglobin in real time, it may be well suited to guiding laparoscopic procedures in order to avoid inadvertent trauma to vascular structures. In this study, a clinical laparoscopic ultrasound probe was used to receive ultrasound for PA imaging and to obtain co-registered B-mode ultrasound (US) images. Pulsed excitation light was delivered to the tissue via a fibre bundle in dark-field mode. Monte Carlo simulations were performed to optimise the light delivery geometry for imaging targets at depths of 1 cm, 2 cm and 3 cm, and 3D-printed mounts were used to position the fibre bundle relative to the transducer according to the simulation results. The performance of the photoacoustic laparoscope system was evaluated with phantoms and tissue models. The clinical potential of hybrid PA/US imaging to improve the guidance of laparoscopic surgery is discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.