We present preparation for fabrication and deployment of science-grade kilo-pixel Kinetic Inductance Detector (KID) based arrays for the Terahertz Intensity Mapper (TIM). TIM is a NASA-funded balloon-borne experiment planning its Antarctic flight for 2026. TIM employs two focal planes, each with four subarrays of ~900 hexagonal-packed, horn-coupled aluminum KIDs. Fabrication yield is high, and we have successfully mapped KID resonant frequencies to spatial locations with our LED mapper. The spatial and frequency information associated with every yielded pixel allows a study of spatial coincidences as cosmic rays interact with the array, as well as interpretation of a covariance analyses performed on the noise timestreams. We also describe the improvement on the science-usable yield of our 864-pixel array achieved by (1) the lithographic trimming that de-collides resonators, and (2) our characterization of interpixel crosstalk. This pioneering work on the postprocessing will pave the way for science with our large KID arrays.
We summarize the technical specifications of TIME, the Tomographic Ionized-carbon Mapping Experiment, which is designed to probe the structure and evolution of the universe by using line intensity mapping to measure carbon monoxide (CO) and ionized carbon ([C ii]) with a mm-wavelength grating spectrometer. We present detector count, spectral coverage and resolution, and give an update on the current status of the project. TIME was installed at the Arizona Radio Observatory 12 m telescope in 2019 and returned for further engineering, commissioning, and observing in 2022. Data taken during the 2022 season demonstrate the ability of TIME to compensate for field rotation through the use of a K-mirror system, as well as spectro-imaging functionality broadly in line with expectations given the current state of the instrument. TIME will return to ARO for science observations for the Winter 2024 season. We discuss hardware and software updates and preliminary data analysis in preparation for science scans.
The Terahertz Intensity Mapper (TIM) is a balloon-borne far-infrared imaging spectrometer designed to characterize the star formation history of the universe. In its Antarctic science flight, TIM will map the redshifted 158um line of ionized carbon over the redshift range 0.5-1.7 (lookback times of 5-10 Gyr). TIM will spectroscopically detect ~100 galaxies, determine the star formation rate history over this time interval through line intensity mapping, and measure the stacked CII emission from galaxies in its well-studied target fields (GOODS-S, SPT Deep Field). TIM consists of a 2-meter telescope feeding two grating spectrometers that that cover 240-420um at R~250 across a 1.3deg field of view, detected with 7200 kinetic inductance detectors and sampled through a novel RF system-on-chip readout. TIM will serve as an important scientific instrument, accessing wavelengths that cannot easily be studied from the ground, and as a testbed for future FIR space technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.