One of the challenges of astronomical instrumentation is overcoming the intermediate stages between instrument design and acceptance testing. Manufacturing, integration tasks, and especially testing to validate these instruments require specialized infrastructure. At the Instituto de Astronomía de la Universidad Nacional Autónoma de México (IA-UNAM), we have recognized the importance of investing in this infrastructure to ensure quality, cost efficiency, and timely completion. In this paper, we present the capabilities of IA-UNAM in the design, manufacturing, and metrology of optical and mechanical components that meet astronomical and aerospace quality requirements and standards. We also discuss the adaptation of spaces necessary to perform these tasks, as well as the development of methodologies and instrumentation that we have implemented for the integration and validation stages of these instruments.
DDRAGO is the first light instrument for the 1.3-m COLIBRÍ robotic telescope at the Observatorio Astronómico Nacional, San Pedro Mártir, Baja California, México (OAN-SPM). COLIBRI was developed by France and Mexico in support of the Sino-French SVOM satellite with its ECLAIRs instrument, designed to provide initial follow-up of GRBs. DDRAGO will also support a much wider program of observations of transient and multi-messenger sources. It is a wide-field multi-channel imager consisting of two parts: DDRAGO and CAGIRE. DDRAGO has blue and red channels, and it also delivers an infrared beam to the CAGIRE imager which will be installed soon after. Here we briefly recall the design and discuss the prototyping, fabrication, integration, and verification of DDRAGO. The installation and commissioning of the instrument at the OAN will start shortly.
KEYWORDS: Sensors, Electronics, Control systems, Power supplies, Computing systems, Charge-coupled devices, Fluctuations and noise, Telescopes, Connectors, Camera shutters
When the SVOM mission is fully operational, data from the GRB and GW locations on the sky must be sent to ground stations to study their optical counterparts. Among these telescopes is COLIBRÍ, a Franco-Mexican robotic telescope. Its diameter is 1.3m and its focal length is f/7.2. It is mainly designed to observe the counterpart in the visible and near infrared. In this paper we describe the control system of DDRAGO, the imager component of COLIBRÍ.
We present the design of the DDRAGO wide-field multi-channel imager for the 1.3 meter COLIBRÍ telescope for the Observatorio Astronómico Nacional in Mexico. The instrument has blue and red channels which have fields of 26 arcmin. It also delivers a faster infrared beam to the CAGIRE imager which has a field of 22 arcmin. The instrument is designed to provide initial follow-up of GRBs detected by the ECLAIRs instrument on the SVOM satellite. DDRAGO is a descendent of the successful RATIR imager, but the optical design is significantly more complex to allow much wider fields. We summarize the optical, optomechanical, structural, and control design
Cosmic explosions have emerged as a major field of astrophysics over the last years with our increasing capability to monitor large parts of the sky in different wavelengths and with different messengers (photons, neutrinos, and gravitational waves). In this context, gamma-ray bursts (GRBs) play a very specific role, as they are the most energetic explosions in the Universe. The forthcoming Sino-French SVOM mission will make a major contribution to this scientific domain by improving our understanding of the GRB phenomenon and by allowing their use to understand the infancy of the Universe. In order to fulfill all of its scientific objectives, SVOM will be complemented by a fast robotic 1.3 m telescope, COLIBRI, with multiband photometric capabilities (from visible to infrared). This telescope is being jointly developed by France and Mexico. The telescope and one of its instruments are currently being extensively tested at OHP in France and will be installed in Mexico in spring 2023.
Here, we describe an implementation of an electron-multiplying charge-coupled device camera to search for seismological activity in white dwarfs (WD). The equipment was installed on the 2.12-m telescope at the Observatorio Astronómico Nacional San Pedro Mártir, Baja California, México. We have determined the proper operational regime to keep a very low noise while maintaining a high gain. We have also developed software for the instrument control system and data processing. Finally, we report the first results on the seismological activity of WD, obtained using photometry with one-second exposure. The results were compared to the known variables LAMOST J004628.31 + 343319.90 and GD 66. The WD 2255-001 showed very weak periodic activity with a dominant frequency of 67 mHz.
A fast photometry methodology is described. We use a cooled Ixon Ultra emCCD in photon counter mode to acquire data. A dissipation system is added to stabilize the temperature down to -96 C. The sensibility of this system makes it ideal even for small telescopes.
COLIBRI is one of the two robotic ground follow-up telescopes for the SVOM (Space Variable Object Monitor) mission dedicated to the study of gamma-ray bursts, allowing determination of precise celestial coordinates of the detected bursts. COLIBRI telescope is a two-mirror Ritchey-Chrétien telescope whose concave primary and convex secondary mirrors have diameters of 1325mm and 485mm respectively. The mirrors are currently manufactured at LAM (Laboratoire d’Astrophysique de Marseille). In this article, the advancement of the work is presented. We also give a global overview and status of the COLIBRI project.
We present an overview of the development of the end-to-end simulations programs developed for COLIBRI (Catching OpticaL and Infrared BRIght), a 1.3m robotic follow-up telescope of the forthcoming SVOM (Space Variable Object Monitor) mission dedicated to the detection and study of gamma-ray bursts (GRBs). The overview contains a description of the Exposure Time Calculator, Image Simulator and photometric redshift code developed in order to assess the performance of COLIBRI. They are open source Python packages and were developed to be easily adaptable to any optical/ Near-Infrared imaging telescopes. We present the scientific performances of COLIBRI, which allows detecting about 95% of the current GRB dataset. Based on a sample of 500 simulated GRBs, a new Bayesian photometric redshift code predicts a relative photometric redshift accuracy of about 5% from redshift 3 to 7.
We present in this article some of the techniques applied at the Instituto de Astronomía of the Universidad Nacional Autónoma de México (IA-UNAM) to the mechanical structural design for astronomical instruments. With this purpose we use two recent projects developed by the Instrumentation Department. The goal of this work is to give guidelines about support structures design for achieving a faster and accurate astronomical instruments design. The main guidelines that lead all the design stages for instrument subsystems are the high-level requirements and the overall specifications. From these, each subsystem needs to get its own requirements, specifications, modes of operation, relative position, tip/tilt angles, and general tolerances. Normally these values are stated in the error budget of the instrument. Nevertheless, the error budget is dynamic, it is changing constantly. Depending on the manufacturing accuracy achieved, the error budget is again distributed. That is why having guidelines for structural design helps to know some of the limits of tolerances in manufacture and assembly. The error budget becomes then a quantified way for the interaction between groups; it is the key for teamwork.
COATLI is a new instrument and telescope that will provide 0.3 arcsec FWHM images from 550 to 920 nm over a large fraction of the sky. It consists of a robotic 50-cm telescope with a diffraction-limited imager. The imager has a steering mirror for fast guiding, a blue channel using an EMCCD from 400 to 550 nm to measure image motion, a red channel using a standard CCD from 550 to 920 nm, and an active optics system based on a deformable mirror to compensate static aberrations in the red channel. Since the telescope is small, fast guiding will provide diffraction-limited image quality in the red channel over a large fraction of the sky, even in relatively poor seeing. The COATLI telescope will be installed at the Observatorio Astronómico Nacional in Sierra San Pedro Mártir, Baja California, México, in 2016 and will initially operate with a simple interim imager. The definitive COATLI instrument will be installed in 2017. In this work we present the general optomechanical and control electronics design of COATLI.
COATLI will provide 0.3 arcsec FWHM images from 550 to 900 nm over a large fraction of the sky. It consists of a robotic 50-cm telescope with a diffraction-limited fast-guiding imager. Since the telescope is small, fast guiding will provide diffraction-limited image quality over a field of at least 1 arcmin and with coverage of a large fraction of the sky, even in relatively poor seeing. The COATLI telescope will be installed at the at the Observatorio Astronómico Nacional in Sierra San Pedro Mártir, México, during 2016 and the diffraction-limited imager will follow in 2017.
DDOTI will be a wide-field robotic imager consisting of six 28-cm telescopes with prime focus CCDs mounted on a common equatorial mount. Each telescope will have a field of view of 12 deg2, will have 2 arcsec pixels, and will reach a 10σ limiting magnitude in 60 seconds of r ≈ 18:7 in dark time and r ≈ 18:0 in bright time. The set of six will provide an instantaneous field of view of about 72 deg2. DDOTI uses commercial components almost entirely. The first DDOTI will be installed at the Observatorio Astronómico Nacional in Sierra San Pedro Martír, Baja California, México in early 2017. The main science goals of DDOTI are the localization of the optical transients associated with GRBs detected by the GBM instrument on the Fermi satellite and with gravitational-wave transients. DDOTI will also be used for studies of AGN and YSO variability and to determine the occurrence of hot Jupiters. The principal advantage of DDOTI compared to other similar projects is cost: a single DDOTI installation costs only about US$500,000. This makes it possible to contemplate a global network of DDOTI installations. Such geographic diversity would give earlier access and a higher localization rate. We are actively exploring this option.
The increasing use of many and different kind of light detectors to acquire, monitor and control various
aspects of the observation imposes the need to standardize the acquisition and processing of images and data. While
scientific image acquisition systems usually include a complex controller, some less demanding subsystems require
the development of electronics and software to read the image. Most of the times these image detectors are rather
small and high speed is of no concern, so controllers need not to be fast; take for instance a telescope guider. With
these directives in mind, in this work we present a very simple image acquisition system based on a Texas
Instruments microcontroller of the family MSP430 and a serial static memory as a standard instrumentation starting
for small image acquisition controllers.
Over the years astronomical instrumentation projects are becoming increasingly complex making necessary to find
efficient ways for project communication management. While all projects share the need to communicate project
information, the required information and the methods of distribution vary widely between projects and project staff. A
particular problem experienced on many projects regardless of their size, is related to the amount of design, planning
information and how that is distributed among the project stakeholders. One way to improve project communications
management is to use a workflow that offers a predefined way to share information in a project. Virtual Reality (VR)
offers the possibility to get a visual feedback of designed components without the expenses of prototype building, giving
an experience that mimics real life situations using a computer. In this contribution we explore VR as a communication
technology that helps to manage instrumentation projects by means of a workflow implemented on a software package
called Discut designed at Universidad Nacional Autónoma de Mexico (UNAM). The workflow can integrate VR
environments generated as CAD models.
Astronomical observatories and telescopes are becoming increasingly large and complex systems, demanding to any
potential user the acquirement of great amount of information previous to access them. At present, the most common
way to overcome that information is through the implementation of larger graphical user interfaces and computer
monitors to increase the display area. Tonantzintla Observatory has a 1-m telescope with a remote observing system. As
a step forward in the improvement of the telescope software, we have designed a Virtual Reality (VR) environment that
works as an extension of the remote system and allows us to operate the telescope. In this work we explore this
alternative technology that is being suggested here as a software platform for the operation of the 1-m telescope.
The Institute of Astronomy at the Universidad Nacional Autonoma de México have developed and tested a CCD
controller based on Texas Instruments Digital Signal Processor (DSP) TMS30C31@50MHz. Images are temporally
stored in a 2MB static RAM attached to the DSP and transferred to the host computer running under Linux. Both tasks,
acquisition and timing, are programmable so it can be conditioned to control any bidimensional detector. Analog voltage
for bias, offsets and gains are fully programmable also. The system has been tested on an infrared Hawaii detector and
fast Marconi 80x80 pixels CCD.
In the last two years the National Observatory at Tonantzintla Puebla, México (OAN Tonantzintla), has been undergoing
several facilities upgrades in order to bring to the observatory suitable conditions to operate as a modern Observational
Astronomy Teaching Laboratory. In this paper, we present the management, requirement definition and project
advances. We made a quantitative diagnosis about of the functionality of the Tonantzintla Observatory (mainly based in
the 1m f/15 telescope) to take aim to educational objectives. Through this project we are taking the steps to correct, to
actualize and to optimize the observatory astronomical instrumentation according to modern techniques of observation.
We present the design and the first actions in order to get a better and efficient use of the main astronomical
instrumentation, as well as, the telescope itself, for the undergraduate, postgraduate levels Observacional Astronomy
students and outreach publics programs for elementary school. The project includes the development of software and
hardware components based in as a common framework for the project management. The Observatory is located at 150
km away from the headquarters at the Instituto de Astronomía, Universidad Nacional Autónoma de México (IAUNAM),
and one of the goals is use this infrastructure for a Remote Observatory System.
We have designed and installed a new active remote observing system for the 1-m, f/15 telescope at the Tonantzintla
Observatory. This remote system is operated in real-time through the Internet, allowing an observer to control the
building, the telescope (pointing, guiding and focusing) and the CCD image acquisition at the main and finder
telescopes from the Instituto de Astronomia headquarters in Mexico City (150 KM away). The whole system was
modeled within the Unified Modeling Language (UML) and the design has proved to be versatile enough for a variety
of astronomical instruments. We describe the system architecture and how different subsystems (telescope control, main
telescope and finder image acquisition, weather station, videoconference, etc.) that are based on different operative
system platforms (Linux, Windows, uIP) have been integrated. We present the first results of an IPv6 over IPv4 tunnel.
Recent remote direct imaging and spectroscopic observations have been used to test the astronomical site. We conclude
that this remote system is an excellent tool for supporting research and graduated observational astronomy programs.
KEYWORDS: Digital signal processing, Sensors, Electronics, Cameras, Optical filters, Imaging spectroscopy, Infrared cameras, Signal detection, Telescopes, Signal processing
CATAVIÑA is a near-infrared camera system to be operated in conjunction with the existing multi-purpose nearinfrared
optical bench "CAMALEON" in OAN-SPM. Observing modes include direct imaging, spectroscopy, Fabry-
Perot interferometry and polarimetry. This contribution focuses on the optomechanics and detector controller
description of CATAVIÑA, which is planned to start operating later in 2006. The camera consists of an 8 inch LN2
dewar containing a 10 filter carousel, a radiation baffle and the detector circuit board mount. The system is based on a
Rockwell 1024x1024 HgCdTe (HAWAII-I) FPA, operating in the 1 to 2.5 micron window. The detector
controller/readout system was designed and developed at UNAM Instituto de Astronomia. It is based on five Texas
Instruments DSK digital signal processor (DSP) modules. One module generates the detector and ADC-system control,
while the remaining four are in charge of the acquisition of each of the detector's quadrants. Each DSP has a built-in
expanded memory module in order to store more than one image. The detector read-out and signal driver subsystems
are mounted onto the dewar in a "back-pack" fashion, each containing four independent pre-amplifiers, converters and
signal drivers, that communicate through fiber optics with their respective DSPs. This system has the possibility of
programming the offset input voltage and converter gain. The controller software architecture is based on a client/server
model. The client sends commands through the TCP/IP protocol and acquires the image. The server consists of a
microcomputer with an embedded Linux operating system, which runs the main program that receives the user
commands and interacts with the timing and acquisition DSPs. The observer's interface allows for several readout and
image processing modes.
The Observatorio Astronomico Nacional at San Pedro Martir is situated on the summit of the San Pedro Martir Sierra in the Baja California peninsula of Mexico, at 2800m above sea level. For as long as three decades, a number of groups and individuals have gathered extremely valuable data leading to the site characterization for astronomical observations. Here we present a summary of the most important results obtained so far. The aspects covered are: weather, cloud coverage, local meteorology, atmospheric optical extinction, millimetric opacity, geotechnical studies, seeing, optical turbulence profiles, wind profiles and 3D simulations of atmospheric turbulence. The results place San Pedro Martir among the most favorable sites in the world for astronomical observations. It seems to be particularly well-suited for extremely large telescopes because of the excellent turbulence and local wind conditions, to mention but two characteristics. Long-term monitoring of some parameters still have to be undertaken. The National University of Mexico (UNAM) and other international institutions are putting a considerable effort in that sense.
Recently, a dedicated study for the seeing forecasting at the San Pedro Martir Observatory started in order to support the project of the TIM (Telescopio Infrarojo Mexicano) that will be installed on this mountainous region of Baja California. Here we present some preliminary results, we analyze the importance of using a vegetation model for simulations over a site surrounding by high trees and we study the influence of the analyzed surface on the simulations outputs. We present the results obtained integrating the optical turbulence respect lines of sight different from zenith. Finally, we report a brief description of some model modifications that are being introduced in order to apply this technique to the forecasting of optical turbulence for observations in the millimetric regime.
We describe the configuration and operation modes of the IR camera/spectrograph: TEQUILA based on a 1024 X 1024 HgCdTe FPA. The optical system will allow three possible modes of operation: direct imaging, low and medium resolution spectroscopy and polarimetry. The basic system is being designed to consist of the following: 1) A LN2 dewar that allocates the FPA together with the preamplifiers and a 24 filter position cylinder. 2) Control and readout electronics based on DSP modules linked to a workstation through fiber optics. 3) An opto-mechanical assembly cooled to -30 degrees that provides an efficient operation of the instrument in its various modes. 4) A control module for the moving parts of the instrument. The opto-mechanical assembly will have the necessary provision to install a scanning Fabry-Perot interferometer and an adaptive optics correction system. The final image acquisition and control of the whole instrument is carried out in a workstation to provide the observer with a friendly environment. The system will operate at the 2.1 m telescope at the Observatorio Astronomico Nacional in San Pedro Martir, B.C. (Mexico), and is intended to be a first-light instrument for the new 7.8m Mexican IR-Optical Telescope.
The system called PUMA is an instrument consisting of a focal reducer coupled to a scanning Fabry-Perot interferometer (SFPI), which is being developed for the Observatorio Astronomicao Nacional at San Pedro Martir, B.C. It will be installed at the 2.0 m Ritchey-Chretien telescope with a focal ratio of F/7.9. It has interference filters, a calibration system, and field diaphragms. The SFPI can be moved out of the optical path in order to acquire direct images. The images produced by this instrument will be focused on an optoelectronic detector, a CCD, or a Mepsicron, depending on the spectral range used.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.