MR-guided high-intensity focused ultrasound (MR-HIFU) is a non-invasive therapeutic technology which has demonstrated clinical potential for tissue ablation. The application of this therapeutic approach facilitated to be a promising option to achieve faster pain palliation in patients with bone metastasis. However, its clinical adoption is still hampered by a lack of workflow integration. Currently, to ensure sufficient positioning, MR images have to be repeatedly acquired in between patient re-positioning tasks, leading to a time-consuming preparation phase of at least 30 minutes, involving extra costs and time to the available treatment time. Augmented reality (AR) is a promising technology that enables the fusion of medical images, such as MRI, with the view of an external camera. AR represents a valid tool for a faster localization and visualization of the lesion during positioning. The aim of this work is the implementation of a novel AR setup for accelerating the patient positioning during MRHIFU treatments by enabling adequate target positioning outside the MRI scanner. A marker-based approach was investigated for fusing the MR data with video data for providing an augmented view. Initial experiments on four volunteers show that MR images were overlaid on the camera views with an average re-projection error of 3.13 mm, which matches the clinical requirements for this specific application. It can be concluded that the implemented system is suitable for MR-HIFU procedures and supports its clinical adoption by improving the patient positioning, thereby offering potential for faster treatment time.
Surgery is a crucial treatment for malignant brain tumors where gross total resection improves the prognosis. Tissue samples taken during surgery are either subject to a preliminary intraoperative histological analysis, or sent for a full pathological evaluation which can take days or weeks. Whereas a lengthy complete pathological analysis includes an array of techniques to be executed, a preliminary tissue analysis on frozen tissue is performed as quickly as possible (30-45 minutes on average) to provide fast feedback to the surgeon during the surgery. The surgeon uses the information to confirm that the resected tissue is indeed tumor and may, at least in theory, initiate repeated biopsies to help achieve gross total resection. However, due to the total turn-around time of the tissue inspection for repeated analyses, this approach may not be feasible during a single surgery. In this context, intraoperative image-guided techniques can improve the clinical workflow for tumor resection and improve outcome by aiding in the identification and removal of the malignant lesion. Hyperspectral imaging (HSI) is an optical imaging technique with the potential to extract combined spectral-spatial information. By exploiting HSI for human brain-tissue classification in 13 in-vivo hyperspectral images from 9 patients, a brain-tissue classifier is developed. The framework consists of a hybrid 3D-2D CNN-based approach and a band-selection step to enhance the capability of extracting both spectral and spatial information from the hyperspectral images. An overall accuracy of 77% was found when tumor, normal and hyper-vascularized tissue are classified, which clearly outperforms the state-of-the-art approaches (SVM, 2D-CNN). These results may open an attractive future perspective for intraoperative brain-tumor classification using HSI.
In neurosurgery, technical solutions for visualizing the border between healthy brain and tumor tissue is of great value, since they enable the surgeon to achieve gross total resection while minimizing the risk of damage to eloquent areas. By using real-time non-ionizing imaging techniques, such as hyperspectral imaging (HSI), the spectral signature of the tissue is analyzed allowing tissue classification, thereby improving tumor boundary discrimination during surgery. More particularly, since infrared penetrates deeper in the tissue than visible light, the use of an imaging sensor sensitive to the near-infrared wavelength range would also allow the visualization of structures slightly beneath the tissue surface. This enables the visualization of tumors and vessel boundaries prior to surgery, thereby preventing the damaging of tissue structures. In this study, we investigate the use of Diffuse Reflectance Spectroscopy (DRS) and HSI for brain tissue classification, by extracting spectral features from the near infra-red range. The applied method for classification is the linear Support Vector Machine (SVM). The study is conducted on ex-vivo porcine brain tissue, which is analyzed and classified as either white or gray matter. The DRS combined with the proposed classification reaches a sensitivity and specificity of 96%, while HSI reaches a sensitivity of 95% and specificity of 93%. This feasibility study shows the potential of DRS and HSI for automated tissue classification, and serves as a fjrst step towards clinical use for tumor detection deeper inside the tissue.
Head and neck cancer (HNC) includes cancers in the oral/nasal cavity, pharynx, larynx, etc., and it is the sixth most common cancer worldwide. The principal treatment is surgical removal where a complete tumor resection is crucial to reduce the recurrence and mortality rate. Intraoperative tumor imaging enables surgeons to objectively visualize the malignant lesion to maximize the tumor removal with healthy safe margins. Hyperspectral imaging (HSI) is an emerging imaging modality for cancer detection, which can augment surgical tumor inspection, currently limited to subjective visual inspection. In this paper, we aim to investigate HSI for automated cancer detection during image-guided surgery, because it can provide quantitative information about light interaction with biological tissues and exploit the potential for malignant tissue discrimination. The proposed solution forms a novel framework for automated tongue-cancer detection, explicitly exploiting HSI, which particularly uses the spectral variations in specific bands describing the cancerous tissue properties. The method follows a machine-learning based classification, employing linear support vector machine (SVM), and offers a superior sensitivity and a significant decrease in computation time. The model evaluation is on 7 ex-vivo specimens of squamous cell carcinoma of the tongue, with known histology. The HSI combined with the proposed classification reaches a sensitivity of 94%, specificity of 68% and area under the curve (AUC) of 92%. This feasibility study paves the way for introducing HSI as a non-invasive imaging aid for cancer detection and increase of the effectiveness of surgical oncology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.