MIRADAS (Mid-resolution InfRAreD Astronomical Spectrograph) is the facility near-infrared multi-object echelle spectrograph for the Gran Telescopio Canarias (GTC) 10.4-meter telescope. MIRADAS operates at spectral resolution R=20,000 over the 1-2.5µm bandpass), and provides multiplexing (up to N=12 targets) and spectro-polarimetry. The MIRADAS consortium includes the University of Florida, Universidad de Barcelona, Universidad Complutense de Madrid, Instituto de Astrofísica de Canarias, Institut d'Estudis Espacials de Catalunya and Universidad Nacional Autonoma de Mexico, as well as partners at A-V-S (Spain), New England Optical Systems (USA), and IUCAA (India). MIRADAS completed its Final Design Review in 2015, and in this paper, we review the current status and overall system design for the instrument, with scheduled delivery in 2018. We particularly emphasize key developments in cryogenic robotic probe arms for multiplexing, a macro-slicer mini-IFU, an advanced cryogenic spectrograph optical system, and a SIDECAR-based array control system for the 1x2 HAWAII-2RG detector mosaic.
The Mid-resolution InfRAreD Astronomical Spectrograph (MIRADAS, a near-infrared multi-object echelle spectrograph operating at spectral resolution R=20,000 over the 1-2.5μm bandpass) was selected by the Gran Telescopio Canarias (GTC) partnership as the next-generation near-infrared spectrograph for the world's largest optical/infrared telescope, and is being developed by an international consortium. The MIRADAS consortium includes the University of Florida, Universidad de Barcelona, Universidad Complutense de Madrid, Instituto de Astrofísica de Canarias, and Institut d'Estudis Espacials de Catalunya, as well as probe arm industrial partner A-V-S (Spain), with more than 45 Science Working Group members in 10 institutions primarily in Spain, Mexico, and the USA. In this paper, we review the overall system design and project status for MIRADAS during its early fabrication phase in 2016.
John Wilson, F. Hearty, M. Skrutskie, S. Majewski, R. Schiavon, D. Eisenstein, J. Gunn, J. Holtzman, D. Nidever, B. Gillespie, D. Weinberg, B. Blank, C. Henderson, S. Smee, R. Barkhouser, A. Harding, S. Hope, G. Fitzgerald, T. Stolberg, J. Arns, M. Nelson, S. Brunner, A. Burton, E. Walker, C. Lam, P. Maseman, J. Barr, F. Leger, L. Carey, N. MacDonald, G. Ebelke, S. Beland, T. Horne, E. Young, G. Rieke, M. Rieke, T. O'Brien, J. Crane, M. Carr, C. Harrison, R. Stoll, M. Vernieri, M. Shetrone, C. Allende-Prieto, J. Johnson, P. Frinchaboy, G. Zasowski, A. Garcia Perez, D. Bizyaev, K. Cunha, V. Smith, Sz. Meszaros, B. Zhao, M. Hayden, S. D. Chojnowski, B. Andrews, C. Loomis, R. Owen, M. Klaene, J. Brinkmann, F. Stauffer, D. Long, W. Jordan, D. Holder, F. Cope, T. Naugle, B. Pfaffenberger, D. Schlegel, M. Blanton, D. Muna, B. Weaver, S. Snedden, K. Pan, H. Brewington, E. Malanushenko, V. Malanushenko, A. Simmons, D. Oravetz, S. Mahadevan, S. Halverson
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) uses a dedicated 300-fiber, narrow-band
near-infrared (1.51-1.7 μm), high resolution (R~22,500) spectrograph to survey approximately 100,000 giant stars across
the Milky Way. This three-year survey, in operation since late-summer 2011 as part of the Sloan Digital Sky Survey III
(SDSS III), will revolutionize our understanding of the kinematical and chemical enrichment histories of all Galactic
stellar populations. We present the performance of the instrument from its first year in operation. The instrument is
housed in a separate building adjacent to the 2.5-m SDSS telescope and fed light via approximately 45-meter fiber runs
from the telescope. The instrument design includes numerous innovations including a gang connector that allows
simultaneous connection of all fibers with a single plug to a telescope cartridge that positions the fibers on the sky,
numerous places in the fiber train in which focal ratio degradation had to be minimized, a large mosaic-VPH (290 mm x
475 mm elliptically-shaped recorded area), an f/1.4 six-element refractive camera featuring silicon and fused silica
elements with diameters as large as 393 mm, three near-infrared detectors mounted in a 1 x 3 mosaic with sub-pixel
translation capability, and all of these components housed within a custom, LN2-cooled, stainless steel vacuum cryostat
with dimensions 1.4-m x 2.3-m x 1.3-m.
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) will use a dedicated 300-fiber, narrow-band
(1.5-1.7 micron), high resolution (R~30,000), near-infrared spectrograph to survey approximately 100,000 giant stars
across the Milky Way. This survey, conducted as part of the Sloan Digital Sky Survey III (SDSS III), will revolutionize
our understanding of kinematical and chemical enrichment histories of all Galactic stellar populations. The instrument,
currently in fabrication, will be housed in a separate building adjacent to the 2.5 m SDSS telescope and fed light via
approximately 45-meter fiber runs from the telescope. The instrument design includes numerous technological
challenges and innovations including a gang connector that allows simultaneous connection of all fibers with a single
plug to a telescope cartridge that positions the fibers on the sky, numerous places in the fiber train in which focal ratio
degradation must be minimized, a large (290 mm x 475 mm elliptically-shaped recorded area) mosaic-VPH, an f/1.4 sixelement
refractive camera featuring silicon and fused silica elements with diameters as large as 393 mm, three near-within a custom, LN2-cooled, stainless steel vacuum cryostat with dimensions 1.4 m x 2.3 m x 1.3 m.
The availability of both large aperture telescopes and large
format near-infrared (NIR) detectors are making wide-field NIR
imaging a reality. We describe the Wide-field Infrared Camera
(WIRC), a newly commissioned instrument that provides the Palomar
200-inch telescope with such an imaging capability. WIRC features
a field-of-view (FOV) of 4.33 arcminutes on a side with its
currently installed 1024-square Rockwell Hawaii-I NIR detector. A
2048-square Rockwell Hawaii-II NIR detector will be installed and
commissioned later this year, in collaboration with Caltech, to
give WIRC an 8.7 arcminute FOV on a side. WIRC mounts at the
telescope's f/3.3 prime focus. The instrument's seeing-limited
optical design, optimized for the JHK atmospheric bands,
includes a 4-element refractive collimator, two 7-position filter
wheels that straddle a Lyot stop, and a 5-element refractive f/3
camera. Typical seeing-limited point spread functions are slightly
oversampled with a 0.25 arcsec per pixel plate scale at the detector. The entire optical train is contained within a cryogenic dewar with a 2.5 day hold-time. Entrance hatches at the top of the dewar allow access to the detector without disruption of the optics and optical alignment. The optical, mechanical, cryogenic, and electronic design of the instrument are described, a commissioning science image and performance analyses are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.