In this work, 2D piezoelectrically driven MEMS circular scanners have been designed, fabricated and tested. These mirrors own large optical apertures of 7 mm, 10 mm and 20 mm for good beam shapes. Also HR-coating layers for 515 nm and 1050 nm reaching up to 99.99% reflexion and 0.1% transmission were applied onto the mirror surface for the suitability of high power laser, where the wavelengths were specified according to the laser source development demands. Based on piezoelectric position sensing elements integrated on the MEMS mirrors a closed-loop control was developed. In this paper the design efforts, realizing circular-scanning and eliminating non-linearity during mode superposition, and fabrication efforts will be reported. Characterization results focusing on mechanical behaviors, position sensing signal, HR-coating will be also important parts of this work.
This paper presents a 2D MEMS mirror for smart headlights, combing high-Q vacuum package with AR (Anti Reflecting)-coating, piezoelectric driving and Lissajous scanning. While the vacuum package protects the MEMS device and the AR-coating suppresses parasite reflections from the glass lid, the AlN-based piezoelectric actuators are robust against shock and vibration in harsh environment, comparing to fragile capacitive finger structures. This gimbal-less MEMS mirror with a large circular aperture (diameter = 5.5 mm) utilizes Lissajous scanning possessing two perpendicular torsion modes with frequencies of fx = 2.26 kHz, fy = 2.30 kHz fulfilling high light density and large total optical scanning angles of 55°, 30° at ± 40 VAC. A 2D projection of 50° x 20° was realized, where the angle loss comparing to the 1D testing arose from pincushion distortion, whose effect was severely reduced by the redesign run. Due to the great long-term stability of AlN and protection of vacuum packages, the MEMS mirror also shows a good reliability. This paper will describe and discuss the design, fabrication and characterization results of this MEMS mirror.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.