Photonic chips are becoming increasingly complex, combining even more optical building blocks on the same chip. With this growing complexity we also see an expanding need for, and use of electrical tuning. This imposes opportunities, as photonic circuits can now become reconfigurable at run time, even to the point of creating arbitrary connectivity between functional building blocks, serving as a general-purpose optical processor. But at the same time, large-scale configurability comes with some tremendous challenges in terms of power consumption, electrical and optical packaging, driver electronics and control algorithms. We will discuss our recent progress in these domains in our path to building general-purpose programmable photonic chips. Expanding silicon photonics with high-efficiency electro-optic tuners, high-density packaging solutions, and electronics and software layers to govern the behavior of these photonic circuits that can be used for both photonic and microwave analog signal processing.
KEYWORDS: Waveguides, Microelectromechanical systems, Phase shifts, Liquid crystals, Silicon photonics, Silicon, Photonic integrated circuits, Electrodes, Oxides, Back end of line
The demand for efficient actuators in photonics has peaked with increasing popularity for large-scale general-purpose programmable photonics circuits. We present our work to enhance an established silicon photonics platform with low-power micro-electromechanical (MEMS) and liquid crystal (LC) actuators to enable largescale programmable photonic integrated circuits (PICs).
We give an overview the progress of our work in silicon photonic programmable circuits, covering the technology stack from the photonic chip over the driver electronics, packaging technologies all the way to the software layers. On the photonic side, we show our recent results in large-scale silicon photonic circuits with different tuning technologies, including heaters, MEMS and liquid crystals, and their respective electronic driving schemes. We look into the scaling potential of these different technologies as the number of tunable elements in a circuit increases. Finally, we elaborate on the software routines for routing and filter synthesis to enable the photonic programmer.
We present our work in the European project MORPHIC to extend an established silicon photonics platform with low-power and non-volatile micro-electromechanical (MEMS) actuators to demonstrate large-scale programmable photonic integrated circuits (PICs).
We present our work to extend silicon photonics with MEMS actuators to enable low-power, large scale programmable photonic circuits. For this, we start from the existing iSiPP50G silicon photonics platform of IMEC, where we add free-standing movable waveguides using a few post-processing steps. This allows us to implement phase shifters and tunable couplers using electrostatically actuated MEMS, while at the same time maintaining all the original functionality of the silicon photonics platform. The MEMS devices are protected using a wafer-level sealing approach and interfaced with custom multi-channel driver and readout electronics.
Programmable photonic circuits, in contrast to classical photonic integrated circuits (PIC), can be configured at run-time to route light along different paths and perform different optical functions. This is accomplished by a mesh of interconnected waveguides that are coupled using electrically actuated tunable couplers and phase shifters. Such a waveguide mesh can redefine the connectivity between functional building blocks, but can also be configured into interferometric and resonant wavelength filters. The generic nature of such programmable PICs will lower the threshold to develop new applications based on photonic chips, in a similar way as programmable electronics.
In the European project MORPHIC we develop a platform for programmable silicon photonic circuits enabled by waveguide-integrated micro-electro-mechanical systems (MEMS). MEMS can add compact, and low-power phase shifters and couplers to an established silicon photonics platform with high-speed modulators and detectors. This MEMS technology is used for a new class of programmable photonic circuits, that can be reconfigured using electronics and software, consisting of large interconnected meshes of phase shifters and couplers. MORPHIC is also developing the packaging and driver electronics interfacing schemes for such large circuits, creating a supply chain for rapid prototyping new photonic chip concepts. These will be demonstrated in different applications, such as switching, beamforming and microwave photonics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.