Fundus imaging is a great tool for the detection of diabetic retinopathy; however, it often suffers from poor image quality and fails to show the vascular information which is crucial for precise diagnosis. Photoacoustic (PA) imaging is a recently developed non-invasive bioimaging technique that illuminates tissues using nanosecond laser pulses to generate acoustic waves to obtain deep tissue images with optical imaging resolution. In this study, we synthesize PA images from normal and abnormal (glaucoma-affected) retinal fundus images. One of the major limitations of synthetic vascular PA images is noise. To alleviate this problem, we propose to use a dictionary learning-based denoising technique i.e., the K-Singular Value Decomposition (K-SVD). Results are compared with several standard denoising approaches such as the Median filter, Jerman filter, and Frangi filter together with the other learning-based approaches, e.g., orthogonal matching pursuit (OMP), and sequential generalized K-means algorithms (SGK). Our results demonstrate that the K-SVD denoising method exhibits superior performance in denoising glaucoma-affected abnormal retina PA images and normal retina PA images, offering better reconstruction image quality and noise removal.
Recently the numerical and experimental results of optical self-written waveguides (SWWs) has been demonstrated intensively in the photopolymer media. In order to further understand the mechanism of self-written net-waveguide in photosensitive polymers, light-induced material response is analyzed. Optical netwaveguide trajectories formed using solid bulk of acrylamide/polyvinyl alcohol (AA/PVA) photopolymer material. As part of this work presents a studying of non-linear optics in photopolymer systems to form a net-waveguides. Which deals with the nonlinearity behaviors of transmitted light in photopolymer media, during refractive index changed throughout the optical self-propagating process. The self-interactions of crossing beams inside photopolymer material during SWWs process are studied. It is shown that there is good agreement between the numerical simulation results and experimental observations. These are confirmed the validity of the numerical model that was used to simulate these experiments.
Recently, a method for synthesizing a hologram of three dimensional (3D) objects from captured light field array is demonstrated. The 3D objects can be captured under incoherent light illumination using a micro lens array and their orthographic projection view images are generated from the captured elemental images. The synthesized orthographic projection view images are then multiplied by the corresponding phase functions and combined to form a digital hologram. For the first time, we analysis the performance of synthesized hologram under photon counting (low light imaging) conditions. The feasibility of this technique is experimentally verified by recording the orthographic projection images using a micro lens array and the reconstructed photon counted hologram is presented with varying photoncounting measurements.
Optical waveguide trajectories formed in an AA/PVA a photopolymer material photosensitive at 532 nm are examined. The transmission of light by this materials is discussed. The bending and arching of the waveguides which occur are investigated. The prediction of our model are shown to agree with the observed of trajectories. The largest index changes taking place at any time during the exposure, i.e. during SWW formation are found at the positions where the largest light intensity is present. Typically, such as maxima exist close to the input face at the location of the Primary Eye or at the location of the Secondary Eyes deeper with in the material. All photosensitive materials have a maximum saturation value of refractive index change that it is possible to induce, which is also discussed.
The linear canonical transform (LCT) is used in modeling a coherent light-field propagation through first-order optical systems. Recently, a generic optical system, known as the quadratic phase encoding system (QPES), for encrypting a two-dimensional image has been reported. In such systems, two random phase keys and the individual LCT parameters (α,β,γ) serve as secret keys of the cryptosystem. It is important that such encryption systems also satisfy some dynamic security properties. We, therefore, examine such systems using two cryptographic evaluation methods, the avalanche effect and bit independence criterion, which indicate the degree of security of the cryptographic algorithms using QPES. We compared our simulation results with the conventional Fourier and the Fresnel transform-based double random phase encryption (DRPE) systems. The results show that the LCT-based DRPE has an excellent avalanche and bit independence characteristics compared to the conventional Fourier and Fresnel-based encryption systems.
KEYWORDS: Digital holography, Systems modeling, Signal analyzers, Digital Light Processing, Digital signal processing, Holograms, Fourier transforms, Data modeling, Radium, Data conversion, Analytics, Electronics engineering, Solar energy
The 2D non-separable linear canonical transform (2D-NS-LCT) can model a range of various paraxial optical systems. Digital algorithms to evaluate the 2D-NS-LCTs are important in modeling the light field propagations and also of interest in many digital signal processing applications. In [Zhao 14] we have reported that a given 2D input image with rectangular shape/boundary, in general, results in a parallelogram output sampling grid (generally in an affine coordinates rather than in a Cartesian coordinates) thus limiting the further calculations, e.g. inverse transform. One possible solution is to use the interpolation techniques; however, it reduces the speed and accuracy of the numerical approximations. To alleviate this problem, in this paper, some constraints are derived under which the output samples are located in the Cartesian coordinates. Therefore, no interpolation operation is required and thus the calculation error can be significantly eliminated.
Propagation and diffraction of a light beam through nonlinear materials are effectively compensated by the effect of selftrapping. The laser beam propagating through photo-sensitive polymer PVA/AA can generate a waveguide of higher refractive index in direction of the light propagation. In order to investigate this phenomenon occurring in light-sensitive photopolymer media, the behaviour of a single light beam focused on the front surface of photopolymer bulk is investigated. As part of this work the self-bending of parallel beams separated in spaces during self-writing waveguides are studied. It is shown that there is strong correlation between the intensity of the input beams and their separation distance and the resulting deformation of waveguide trajectory during channels formation. This self-channeling can be modelled numerically using a three-dimension model to describe what takes place inside the volume of a photopolymer media. Corresponding numerical simulations show good agreement with experimental observations, which confirm the validity of the numerical model that was used to simulate these experiments.
Terahertz radiation lies between the microwave and infrared regions in the electromagnetic spectrum. Emitted frequencies range from 0.1 to 10 THz with corresponding wavelengths ranging from 30 μm to 3 mm. In this paper, a continuous-wave Terahertz off-axis digital holographic system is described. A Gaussian fitting method and image normalisation techniques were employed on the recorded hologram to improve the image resolution. A synthesised contrast enhanced hologram is then digitally constructed. Numerical reconstruction is achieved using the angular spectrum method of the filtered off-axis hologram. A sparsity based compression technique is introduced before numerical data reconstruction in order to reduce the dataset required for hologram reconstruction. Results prove that a tiny amount of sparse dataset is sufficient in order to reconstruct the hologram with good image quality.
The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical systems. Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling the light field propagations but also of interest in various signal processing based applications, for instance optical encryption. Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random- Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of freedom. Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform (FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more degrees of freedom with an augmented key-space.
The linear canonical transform (LCT) is essential in modeling a coherent light field propagation through first-order optical systems. Recently, a generic optical system, known as a Quadratic Phase Encoding System (QPES), for encrypting a two-dimensional (2D) image has been reported. It has been reported together with two phase keys the individual LCT parameters serve as keys of the cryptosystem. However, it is important that such the encryption systems also satisfies some dynamic security properties. Therefore, in this work, we examine some cryptographic evaluation methods, such as Avalanche Criterion and Bit Independence, which indicates the degree of security of the cryptographic algorithms on QPES. We compare our simulation results with the conventional Fourier and the Fresnel transform based DRPE systems. The results show that the LCT based DRPE has an excellent avalanche and bit independence characteristics than that of using the conventional Fourier and Fresnel based encryption systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.