In pursuit of advancing large array receiver capabilities and enhancing the 16-element Heterodyne Array Receiver Program (HARP) instrument on the James Clerk Maxwell Telescope (JCMT), we have successfully fabricated 230 GHz finline superconductor-insulator-superconductor (SIS) mixers. These mixers are critical for assessing the potential and prospective for the HARP instrument’s upgrade. Unlike the existing HARP’s mixer, we replace the probe antenna with an end-fire unilateral finline as the waveguide to planar circuit transition. This mixer design is expected to operate from about 160–260 GHz (approximately 47% bandwidth), and the mixer chips’ current-voltage (I-V) curves have been characterized, showing promising results with a quality factor (Rsg/Rn) exceeding 9.3. Evaluation of the double-sideband (DSB) receiver noise temperature (Trx) is currently underway. Once successfully characterised, our immediate aim is to scale the mixer to operate at HARP’s frequency range near 345 GHz to achieve similar broad RF bandwidth performance. Ongoing simulations are currently being conducted for the design of the 345 GHz finline mixer. This work marks a crucial step toward enhancing HARP receiver performance with better sensitivity and wider Intermediate Frequency (IF) bandwidth, enabling higher-frequency observations, and expanding the scientific potential of the JCMT and its collaborative partners.
We present the instrument integration and on-sky commissioning results for Kuntur, the LLAMA 690GHz receiver, on loan to the James Clerk Maxwell Telescope (JCMT). The LLAMA 690GHz receiver is a state-of-the-art sideband-separating (2SB), dual polarization receiver, built by the Netherlands Research School for Astronomy (NOVA) laboratory at Groningen, for the Large Latin American Millimeter Array (LLAMA), Argentina. In collaboration with LLAMA, the Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan (ASIAA) and the Greenland Telescope (GLT), the receiver cartridge and WCA have come on loan to JCMT for on-sky commissioning and future VLBI observing tests. The results reveal the potential for single dish observing science at 690GHz with JCMT on Maunakea and provides a pointer to future 690GHz science for both the GLT and LLAMA.
Auto-Correlation Spectral Imaging System (ACSIS) is an IF, correlation, reduction, and display system for the submillimeter telescope James Clerk Maxwell Telescope (JCMT). It can produce calibrated spectral images in real time and enables rapid imaging of large areas of the sky over a wide spectral range or at high resolution from up to 16 receiver feeds. Now more than 20 years old, the original 8-10GHz synthesizers for the down conversion module are obsolete and no longer available. Due to the hardware changes in the new 4-10GHz model, an interface circuit is needed to shorten the rise time of the serial clock signal. Further upgrades can better support wide IF band 2-12GHz receiver applications, such as Atacama Large Millimeter Array (ALMA) band-6 receivers. This paper discusses the observatory’s development of a new correlator that utilizes several existing electronics to support current and future receivers.
Most telescope proposal science cases are governed by the need to achieve a given SNR (Signal-to-noise ratio). However, traditionally telescopes award applicants a certain number of hours rather than an SNR or noise. Noise calculators cannot solve this problem entirely, due to variations in weather, elevation and instrument performance when an observation is actually carried out. The JCMT is currently shifting towards awarding users (when appropriate) a given RMS towards their source/s instead of a time spent observing, initially for our new 230 GHz instrument Ū ū. The JCMT already had many necessary parts of this process in place (noise calculators, a robust ‘live’ pipeline, and an extremely flexible queue based system). This presentation describes our efforts to start implementing this process for our users, discusses the necessary systems and software required, and describes the lessons applicable for other observatories.
We have fabricated new superconductor-insulator-superconductor (SIS) mixers chips for the 16-element Heterodyne Array Receiver Program (HARP) instrument on the James Clerk Maxwell Telescope (JCMT). The original spare mixer chips were limited and not performed as well as the used ones in HARP. The ability to manufacture new mixer chips would therefore be important for the repair and upgrade of HARP. Our immediate goal is to replace the current nonfunctional mixers in HARP with new chips. We modified the designs of waveguide probe and the matching circuit of the SIS mixer chip. The newly designed chips were fabricated with a quality factor (Rsg/Rn) over 10. The double-sideband (DSB) receiver noise temperature (Trx) is lower than 80K at frequencies between 325 GHz and 375 GHz, which is comparable to the best of the original devices. Three of the sixteen mixers have been replaced and they work very well.
Namakanui is an instrument containing three inserts in an ALMA type Dewar. The three inserts are ‘Ala’ihi, ‘U’ū and ‘Āweoweo operating around 86, 230 and 345GHz. The receiver is being commissioned on the JCMT. It will be used for both Single dish and VLBI observations. We will present commissioning results and the system.
KEYWORDS: Polarization, Spectroscopy, Spectral resolution, Signal processing, Radio telescopes, Signal detection, Jupiter, Observatories, Magnetism, Receivers
We report the development of the software-based polarization spectrometer‘ PolariS ’and early results from commissioning on the Nobeyama 45-m radio telescope. PolariS aims to detect the Zeeman effect of CCS line to measure ~ 100 μG magnetic fields in star-forming molecular cores. The PolariS consists of the K5/VSSP32 digitizer and a Linux-based PC with a GPU to process full-Stokes spectroscopy of 2 x 131072 ch for bandwidth of 4 or 8 MHz. We have verified performance of PolariS and succeeded to take full-stokes spectra of SiO masers. Since the code is open at GitHub everybody can utilize it.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.