Atomic ions can be isolated from their environment through laser-cooling and trapping, making them useful for quantum information processing, measurement, and sensing. A variety of atomic ion species have been used as qubits. Hyperfine qubits with nuclear spin I = 1/2 have demonstrated the long qubit coherence times with simple, robust laser manipulation. Other qubits (I ≠ 1/2) have easily-prepared, long-lived metastable electronic excited states, and simple discrimination between these states allows high fidelity readout. However, none of the naturally- occurring, atomic ions with nuclear spin I = 1/2 have these excited states that are simultaneously long-lived and easy to prepare. We demonstrate loading, cooling, and qubit manipulation of an artificial, I = 1/2 species of barium with visible wavelength lasers: 133Ba+. We achieved a single shot qubit state preparation and readout fidelity of F = 0.9997, the lowest error rate ever achieved by any qubit on any platform.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.