A photoacoustic (PA) sensor for spectroscopic measurements of NO2-N2 at ambient pressure and temperature is demonstrated. The PA sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared (MIR) optical parametric oscillator (OPO). Spectroscopic measurements of NO2-N2 in the 3.25 μm to 3.55 μm wavelength region with a resolution bandwidth of 5 cm-1 and with a single shot detection limit of 1.6 ppmV (μmol/mol) is demonstrated. The measurements were conducted with a constant flow rate of 300 ml/min, thus demonstrating the suitability of the gas sensor for real time trace gas measurements. The acquired spectra is compared with data from the Hitran database and good agreement is found. An Allan deviation analysis shows that the detection limit at optimum integration time for the PAS sensor is 14 ppbV (nmol/mol) at 170 seconds of integration time, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 3.3×10-7 W cm-1 Hz-1/2.
A photoacoustic (PA) sensor for fast and real-time gas sensing is demonstrated. The PA cell has been designed for flow noise immunity using computational fluid dynamics (CFD) analysis. PA measurements were conducted at different flow rates by exciting molecular C-H stretch vibrational bands of hexane (C6H14) in clean air at 2950cm-1 (3.38 μm) with a custom made mid-infrared interband cascade laser (ICL). The PA sensor will contribute to solve a major problem in a number of industries using compressed air by the detection of oil contaminants in high purity compressed air. We observe a (1σ, standard deviation) sensitivity of 0.4 ±0.1 ppb (nmol/mol) for hexane in clean air at flow rates up to 2 L/min, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 2.5×10-9 W cm-1 Hz1/2, thus demonstrating high sensitivity and fast and real-time gas analysis. The PA sensor is not limited to molecules with C-H stretching modes, but can be tailored to measure any trace gas by simply changing the excitation wavelength (i.e. the laser source) making it useful for many different applications where fast and sensitive trace gas measurements are needed.
An innovative and novel quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for highly sensitive and selective breath gas analysis is introduced. The QEPAS sensor consists of two acoustically coupled micro- resonators (mR) with an off-axis 20 kHz quartz tuning fork (QTF). The complete acoustically coupled mR system is optimized based on finite element simulations and experimentally verified. Due to the very low fabrication costs the QEPAS sensor presents a clear breakthrough in the field of photoacoustic spectroscopy by introducing novel disposable gas chambers in order to avoid cleaning after each test. The QEPAS sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared optical parametric oscillator (MIR OPO). Spectroscopic measurements of methane and methanol in the 3.1 μm to 3.7 μm wavelength region is conducted. Demonstrating a resolution bandwidth of 1 cm-1. An Allan deviation analysis shows that the detection limit at optimum integration time for the QEPAS sensor is 32 ppbv@190s for methane and that the background noise is solely due to the thermal noise of the QTF. Spectra of both individual molecules as well as mixtures of molecules were measured and analyzed. The molecules are representative of exhaled breath gasses that are bio-markers for medical diagnostics.
We report a correlation between the scattering value “Aq” and the ISO standardized roughness parameter Rq. The Aq value is a measure for surface smoothness, and can easily be determined from an optical scattering measurement. The correlation equation extrapolates the Aq value from a narrow measurement range of ±16° from specular to a broader range of ±80°, corresponding to spatial surface wavelengths of 0.8 μm to 25 μm, and converts the Aq value to the Rq value for the surface.
Furthermore, we present an investigation of the changes in scattering intensities, when a surface is covered with a thin liquid film. It is shown that the changes in the angular scattering intensities can be compensated for the liquid film, using empirically determined relations. This allows a restoration of the “true” scattering intensities which would be measured from a corresponding clean surface. The compensated scattering intensities provide Aq values within 5.7 % ± 6.1 % compared to the measurements on clean surfaces.
We present an innovative method Optical Diffraction Microscopy (ODM). for the simultaneous measurement of specular and non-specular diffraction patterns of sub-micron periodic structures. A sample is illuminated with broadband light and the diffraction pattern is collected by using a pair of ellipsoidal mirrors, optical fibers and a spectrometer. This method allows for rapid measurements and makes used of the Rigorous Coupled Wave algorithm for data analysis. In the present work the method has been applied to binary and multi-layer sub-micron gratings. A series of binary gratings with periods of 318 nm and 360 nm with different exposure levels of the photoresist were investigated. We succeded in characterize underexposed, ideally exposed and overexposed photoresist grating profiles. The measurements are well-suited to determine the delivered exposure energy density to photoresist gratings. The ODM technique may thus be applied to specify the exposure window and as a feedback in order to adjust the exposure energy density on-line. The homogeneity of a grating on multi-layered substrate has been investigated. Heights and duty cycles ranging from 50 nm to 55 nm and 0.25 to 0.97, respectively, have been found. AFM measurements of the gratings verify the ODM results and demonstrate that the ODM technique can be used to determine grating topology.
KEYWORDS: Diffraction, Diffraction gratings, Atomic force microscopy, Scanning electron microscopy, Sensors, Data modeling, System on a chip, Americium, Optical microscopy, Microscopy
Atomic force microscopy (AFM) and optical diffraction microscopy (ODM) are used to measure the profiles of grating grooves with depths much larger than their widths. Gratings with these features are essential in numerous optical devices such as spectrometers, monochromators and for the production of many fibre Bragg gratings. However, measurement of the physical shape is inherently difficult but necessary for the understanding of their function and in order to improve the manufacturing process. After a thorough calibration of an AFM and by tilting the plane of the grating by up to 17° relative to the symmetry axis of the sensing probe we measured accurately and traceably the sidewall angle and the sidewall profile in a non-destructive way. ODM is a new method where the intensity of the optical field diffracted is measured as a function of the frequency and an inverse algorithm is used to reconstruct the surface profile. It is fast, non-destructive, and it gives height and filling degree of a grating very accurately. As example a high aspect ratio grating with period p of 220 nm, depths d of ≈300 nm, and sidewall angles
γ of approximately ≈90° and filling degree f of ≈40 % were examined. Standard uncertainties as low as u(d) = 3 nm, u( α) = 0.4° and u(f) = 3.1 % were achieved. Despite the fact that the AFM responds to the physical surface and ODM responds to the optical
properties of the material we find that the results are in very good agreement and consistent with (destructive) scanning electron microscopy measurements of the filling degree.
Recently emerged photonic bandgap fibers with their extraordinary optical properties offer many interesting device applications. We present the status of our work on the use of this kind of a fiber in sensing and wavelength referencing both in the 1300 and 1500 nm wavelength regions. The photonic bandgap fibers are spliced to standard single-mode fibers at input end for easy coupling and filled with gas through the other end placed in a vacuum chamber. The technique is applied to measure absorption lines of strongly absorbing gases such as acetylene and hydrogen cyanide by employing tunable lasers and LEDs as light sources. The measurement of weakly absorbing gases such as methane and ammonia is also explored. To realize a permanent wavelength reference sealing of a photonic bandgap fiber using index-matching UV-curable adhesive is demonstrated.
Two new double resonance signals were observed in H2CS using the 10R4 CO2 laser line. Both radio-frequency transitions have been assigned. Their behavior in a magnetic field up to 10.5 kG has been studied. One signal was pumped by the 9P20 laser line and the other two by the 10R4 laser line. A 10R4 signal observed at 15.8 MHz was assigned to the 113.8 yields 113.9 transition in the v6 ground state of H2CS. The other 10R4 signal, which was observed at 202.8 MHz, was assigned to the 112.9 yields 112.10 transition in the excited state. This transition is the first to be reported in an excited vibrational state of the electronic ground state. The frequency of this transition was found to be strongly influenced by Coriolis coupling between the v4 and v6 states.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.