As the semiconductor industry continues to scale down critical dimensions (CD), proximity effects get more and more severe. As such, aggressive Optical Proximity Correction (OPC) features like hammerheads, serifs and assist bars inevitably appear on fabricated masks. The great challenge, however -- to reliably assure the quality of these advanced masks -- is to be able to direclty judge a controversial defect under such complex features. It is necessary to find a more effective way to accurately disposition the defects found on these masks. Simulation-based defect disposition strategies have now become much more important for judging defect printabiilty. In this paper, we use variaous simulation tools to make a systematic study of defect printability right from the design to wafer printing. Four different combinations of OPC features with assist bars are presented here to demonstrate the defect printability and their induced CD changes compared to wafer results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.