Bone disease is a growing epidemic in the world today that will lead to billions of dollars of medical bills. While a range of lifestyle and genetic factors play a role in the progression of disease, in overarching symptom of increased bone porosity leads to decreased mobility, pain, fracture, and even death. Therefore, it is important to monitor trabecular bone for better care of affected individuals. Photoacoustic microscopy (PAM) is a hybrid modality that combines high optical absorption qualities of biological tissue with high spatial resolution of ultrasound. Our study aims to further assess the ability to image bone microarchitecture with photoacoustic imaging. A picosecond-pulsed laser with a wavelength of 532 nm was used to excite the bone while ultrasonic transients were captured by a 20 MHz transducer. We first preformed studies to characterize our lateral resolution and optimize our system using phantoms mimicking different bone porosity. We then imaged pig bone ex-vivo. Our results show that this photoacoustic (PA) imaging has the potential to identify normal and osteoporosis diseased bone. The capability to noninvasively quantify bone tissue composition suggests a possible use of PAM as an optical biopsy for the diagnosis of bone pathologies such as osteoporosis, which are characterized by a progressive reduction and transformation of mineral in the bone matrix.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.