Vortex volume grating (VVG) has advantages of high diffraction efficiency (DE), excellent angular selectivity, broad spectral band, and flexible design, making it a good candidate as an orbital angular momentum (OAM) generator in high power laser system.. In our research, a vortex volume grating with a relative diffraction efficiency of 84.58% and an angular spectrum of 1.864 mrad at 1064 nm is fabricated, and the refractive index modulation (RIM) is retrieved.
In this work, a chirped volume Bragg grating (CVBG) with over 40 nm high efficiency broadband spectra for pulse compression of near 100 fs was studied. Based on the fundamental matrix method, the effects of various structural parameters of CVBG on its diffraction characteristics were analyzed and then a design of broadband and high efficiency CVBG was proposed. Afterward, the monolithic CVBG was utilized to stretch and recompress a 100 fs pulse with a center wavelength of 1030 nm. The result shows this device has a high diffraction efficiency (84%) and a fine reciprocity. For the fabrication of large-size broadband CVBGs, double cylindrical wave holographic interference in photo-thermorefractive (PTR) glass was applied to achieve a wide range uniform and stable light field, which could greatly minimize unnecessary space chirp.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.