KEYWORDS: Machine learning, Military intelligence, Data modeling, Data processing, Statistical analysis, Analytical research, Visualization, Data communications, Mathematical modeling, Strategic intelligence, Performance modeling, Data integration
Army Intelligence operates in a data rich environment with limited ability to operationalize exponentially increasing volumes of disparate structured and unstructured data to deliver timely, accurate, relevant, and tailored intelligence in support of mission command at echelon. The volume, velocity, variety, and veracity (the 4 Vs) of data challenge existing Army intelligence systems and processes, degrading the efficacy of the Intelligence Warfighting Function (IWfF). At the same time, industry has exploited the recent growth in data science technology to address the challenge of the 4 Vs and bring relevant data-driven insights to business leaders. To bring together the lessons from industry and the data science community, the US Army Research Laboratory (ARL) has collaborated with the US Army Intelligence Center of Excellence (USAICoE) to research these Military Intelligence (MI) challenges in an Army AR 5-5 Study entitled, “Application of Data Science within the Army Intelligence Warfighting Function.” This paper summarizes the problem statement, research performed, key findings, and way forward for MI to effectively employ data science and data scientists to reduce the burden on Army Intelligence Analysts and increase the effectiveness of data exploitation to maintain a competitive edge over our adversaries.
The lack of tools to rapidly identify and align data from different sources is a critical, needed capability for the Department of Defense especially when it comes to automated ingestion. In the current open source Karma Mapping Tool, the Steiner tree optimization algorithm suggests semantic types during data alignment. We hypothesize that Machine Learning (ML) may perform better than the Steiner approach on a subset of column types, or “labels”, where 1.) the data is extremely similar in structure and content and 2.) inferring column type correctly is highly dependent on the interrelated components of the dataset. In this session we discuss the experimental design, our initial results, and a path toward future work in broader applications beginning with intelligence analysis in the maritime domain. The initial results from this experiment show there is promise in using ML to do column prediction in analysis environments where there are many similar or overlapping data.
KEYWORDS: Cognitive modeling, Systems modeling, Data modeling, Monte Carlo methods, Social networks, Motion models, Analytical research, Target acquisition, Information security, Diffusion
Army staffs at division, brigade, and battalion levels often plan for contingency operations. As such, analysts consider the impact and potential consequences of actions taken. The Army Military Decision-Making Process (MDMP) dictates identification and evaluation of possible enemy courses of action; however, non-state actors often do not exhibit the same level and consistency of planned actions that the MDMP was originally designed to anticipate. The fourth MDMP step is a particular challenge, wargaming courses of action within the context of complex social-cultural behaviors. Agent-based Modeling (ABM) and its resulting emergent behavior is a potential solution to model terrain in terms of the human domain and improve the results and rigor of the traditional wargaming process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.