Atom interferometers that operate in the spatial domain through continuous measurement of an atomic beam provide benefits in the elimination of sensor dead time and reduced sensitivity to certain noise sources. Further improving its operation, time-domain control of a spatial-domain interferometer can provide necessary methods of error suppression and dynamic range improvement. We model numerically and experimentally demonstrate methods of time-domain control in a 3D-cooled atomic beam interferometer. We demonstrate suppression of magnetic-field-induced phase noise through rapid reversal of the direction of inertial sensitivity at a rate faster than the inverse interrogation time of the interferometer.
We present new modes of operation in a continuous, 3D-cooled atomic beam interferometer designed for inertial sensing. In these experiments, a moving optical molasses cooling stage provides both three-dimensional cooling and excellent dynamic control over atomic beam velocity. By modulating the atomic beam velocity, we modulate the interferometer scale factor, enabling us to extract the absolute inertial phase over many phase cycles without sacrificing short-term sensitivity. These demonstrations provide a path toward solving the longstanding challenge of limited dynamic range in spatial-domain atom interferometric inertial sensors.
Through the use of a high-flux rubidium beam source with sub-Doppler temperatures in three dimensions, we have demonstrated an inertially sensitive atom interferometer featuring high contrast, low noise, and continuous measurement with high bandwidth. We describe the cold-atom source and the optical design that optimizes interferometer contrast. Finally, we demonstrate useful features enabled by this architecture, such as continuous phase shear readout and rapid reversal of inertial sensitivity. This demonstration may enable future cold-atom sensors that measure with both high sensitivity and high bandwidth.
We study decoherence in continuously cooled atom interferometers by performing Raman-Ramsey fringe measurements in a continuous beam of 3D-sub-Doppler-cooled rubidium atoms. The atom beam is produced by a two-stage cold atom source that is designed to mitigate the decoherence of atomic interference caused by cooling induced fluorescence. The atom beam source produces a collimated beam of over 109 atoms/s that is cooled by polarization gradient cooling to temperatures as low as 14 µK. We infer the potential performance of this atom beam source in a cold-atom gyroscope and use numerical models of motion in 6 degrees of freedom to study the expected performance on dynamic platforms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.