In the realm of food safety, the standard practice involves collecting food product samples and sending them to a central laboratory for microbiological testing. However, this process introduces delays in obtaining the microbiological testing results and subsequently affects the timely delivery of food products to consumers. To further reduce the time-to-detection issue, we propose the development of a self-contained, battery-operated, high-sensitivity optical sensor that can be affixed to the cap of the typical food sample collection container. This device, called MPACT, offers real-time and in-transit monitoring of the contamination status of the food sample, specifically targeting E. coli O157:H7, through a bioluminescence assay. The assay exclusively targets the target pathogen and, when detected, produces minimal luminescence. As the sample is transported in the container, the number of bacterial cells multiplies, and once the luminescent signal reaches a predefined threshold, the sensor reports the results via Bluetooth. This study focuses on the design of the bottle cap sensor and examines its sensitivity by subjecting it to bioluminescence samples.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.