Significance: Colorectal cancer incidence has decreased largely due to detection and removal of polyps. Computer-aided diagnosis development may improve on polyp detection and discrimination.
Aim: To advance detection and discrimination using currently available commercial colonoscopy systems, we developed a deep neural network (DNN) separating the color channels from images acquired under narrow-band imaging (NBI) and white-light endoscopy (WLE).
Approach: Images of normal colon mucosa and polyps from colonoscopies were studied. Each color image was extracted based on the color channel: red/green/blue. A multilayer DNN was trained using one-channel, two-channel, and full-color images. The trained DNN was then tested for performance in detection of polyps.
Results: The DNN performed better using full-colored NBI over WLE images in the detection of polyps. Furthermore, the DNN performed better using the two-channel red + green images when compared to full-color WLE images.
Conclusions: The separation of color channels from full-color NBI and WLE images taken from commercially available colonoscopes may improve the ability of the DNN to detect and discriminate polyps. Further studies are needed to better determine the color channels and combination of channels to include and exclude in DNN development for clinical use.
Infrared (IR) images are essential to improve the visibility of dark or camouflaged objects. Object recognition and segmentation based on a neural network using IR images provide more accuracy and insight than color visible images. But the bottleneck is the amount of relevant IR images for training. It is difficult to collect real-world IR images for special purposes, including space exploration, military and fire-fighting applications. To solve this problem, we created color visible and IR images using a Unity-based 3D game editor. These synthetically generated color visible and IR images were used to train cycle consistent adversarial networks (CycleGAN) to convert visible images to IR images. CycleGAN has the advantage that it does not require precisely matching visible and IR pairs for transformation training. In this study, we discovered that additional synthetic data can help improve CycleGAN performance. Neural network training using real data (N = 20) performed more accurate transformations than training using real (N = 10) and synthetic (N = 10) data combinations. The result indicates that the synthetic data cannot exceed the quality of the real data. Neural network training using real (N = 10) and synthetic (N = 100) data combinations showed almost the same performance as training using real data (N = 20). At least 10 times more synthetic data than real data is required to achieve the same performance. In summary, CycleGAN is used with synthetic data to improve the IR image conversion performance of visible images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.